期刊文献+

Al-Ti-C-B中间合金对高铝锌基合金组织和性能的影响 被引量:3

Effects of Al-Ti-C-B master alloy on the microstructure and mechanical properties of high aluminum-zinc-based alloy
下载PDF
导出
摘要 研究了Al-6.53Ti-0.3C-0.46B中间合金(Ti∶C>4∶1)对高铝锌基合金的组织和性能的影响,结果表明,加入适量的中间合金可显著细化合金的显微组织,初生富铝α相从粗大的树枝晶转变为细小均匀等轴晶,等轴晶尺寸30~50μm。砂型铸造条件下,合金的伸长率从1.7%提高到10.0%,拉伸强度在410 MPa左右。金属型铸造条件下,合金的伸长率从1.0%提高到16.0%,拉伸强度约407 MPa。尽管组织显著细化,但拉伸强度并没有显著增加。高铝锌基合金组织细化的机理主要通过加入Al-Ti-C-B中间合金增加了异质形核质点。 This paper addressed the effects of AI-6.53Ti-0.3C-0.46B master alloy (Ti: C 〉 4: 1) on the microstructure and mechanical properties of high aluminum-zinc-based alloy. Experimental results show that the addition of the master alloy can significantly refine the microstructure of the high aluminum-zinc-based alloy. The shape of a primary ~ phase grain changes from coarse dendrite into fine and uniform equiaxed crystal. The average size of equiaxed crystal is 30 -50 wm. The extension rate of the alloy increases from t. 7% to ]0.0% and the tensile strength is about 410 MPa in the condition of sand casting (SC). The extension rate of the alloy increases from ]. 0% to ]6.0% and the tensile strength is about 407 MPa in the condition of permanent mold casting (PMC). Its tensile strength does not significantly increase though its microstructure is obviously refined. Its refinement mechanism is the increase of heterogeneous nucleus due to the addition of AI-Ti-C-B master alloy.
作者 田长文
出处 《山东科学》 CAS 2012年第1期51-55,共5页 Shandong Science
基金 山东省自然科学基金(ZR2010EL013) 山东省科技发展计划项目(2007GG10003006)
关键词 锌基合金 锌铝合金 Al-Ti-C-B中间合金 变质处理 组织细化 zinc-based alloy zinc-aluminum alloy AI-Ti-C-B master alloy modification refinement
  • 相关文献

参考文献15

二级参考文献80

共引文献82

同被引文献37

  • 1聂金凤,刘相法,丁海民,马晓光.Al-Ti-C-B中间合金晶粒细化行为的研究[J].特种铸造及有色合金,2008,28(S1):175-177. 被引量:11
  • 2TIRYAKIOGLU M. Si particle size and aspect ratio distributions in an A1-7% Si-0.6% Mg alloy during solution treatment [J]. Material Science and Engineering :A, 2008, 473 (1/2) :1 -6.
  • 3LI X P, WANG X J, SAUNDERS M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable uhrafine eutectic microstructure and 25% tensile ductility[J]. Acta Materialia, 2015, 95:74 - 82.
  • 4OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sinteringimelting (SLS/SLM) of aluminium alloy powders : Processing, microstructure, and properties [J]. Progress in Materials Science, 2015, 74:401 - 477.
  • 5SERCOMBE T B, SCHAFFER G B. Rapid manufacturing of aluminum components [J]. Science, 2003, 301 (5637) : 1225 - 1227.
  • 6WANG X J, ZHANG L C, FANG M H, et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy[J]. Material Science and Engineering A, 2014, 597:370 - 375.
  • 7SERCOMBE T, JONES N, DAY R, et al. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting[J]. Rapid Prototyping Journal, 2008, 14 (5) : 300 - 304.
  • 8KRUTH J P, MERCELIS P, van VAERENBERGH J, et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2005, 11 (1): 26-36.
  • 9THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303-3312.
  • 10ZHANG L C, KLEMM D, ECKERT J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy [J]. Scripta Materialia, 2011, 65 ( 1 ) : 21 - 24.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部