期刊文献+

基于关联矩阵的频繁项集挖掘算法 被引量:1

An Algorithm for Mining Frequent Itemsets Based on Associated Matrix
下载PDF
导出
摘要 根据经典Apriori性质和算法思想,提出了一种基于关联矩阵的挖掘频繁项集的算法.应用实例分析表明,该算法在挖掘过程中,只需扫描一次数据库,有效地减少了扫描数据库的次数,提高了算法的效率. According to the ideas and properties of the classical Apriori algorithm, a new algorithm for mining frequent itemsets is proposed, which is based on the associated matrix. Through the analysis of the example, it has been found that this algorithm scans the 'database only for one time and reduces the number of scanning during the mining process, and improves the efficiency of the algorithm.
作者 张雅芬 王新
出处 《云南民族大学学报(自然科学版)》 CAS 2012年第2期138-140,144,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 云南省教育厅科学研究基金(2011Z025)
关键词 APRIORI算法 关联矩阵 频繁项集 Apriori algorithm associated matrix frequent itemsets
  • 相关文献

参考文献8

  • 1AGRAWAL R,IMIELINSKI T,WAMI A S.Mining asso-ciation rules between sets of items in large databases[C]//Proceedings of the ACM SIGMOD Conference on Manage-ment of Data.Washington,1993(05):207-216.
  • 2AGRAWAL R,SRIKANT R.Fast algorithms for miningassociation rules[C]//Proceeding of the 20th VLDB Con-ference.Santiago:Morgan Kaufmann,1994:87-499.
  • 3范明.数据挖掘:概念与技术[M].孟小峰,译.北京:机械工业出版社,2003.
  • 4Tan Pang-Ning,Steinbach M,Kumar V.数据挖掘导论[M].范明,范宏建译.北京:人民邮电出版社,2006.
  • 5HAN Jia-wei,PEI Jian,YIN Yi-wen.Mining frequent pat-terns without candidate generation[C]//Proceedings ofACM SIGMOD the 2000 International Conference on Man-agement of Data.New York:ACM,2000:1-12.
  • 6汪际和,陈平,王新.一种基于信息表的关联规则挖掘方法[J].云南民族大学学报(自然科学版),2010,19(6):432-434. 被引量:2
  • 7张雅芬,王新.一种挖掘负关联规则的有效方法[J].云南民族大学学报(自然科学版),2011,20(4):301-304. 被引量:6
  • 8WU Xing-dong,ZHANG C,ZHANG S.Mining both pos-itive and negative association rules[C]//Proceedings ofthe 19th ICMI.New York:Springer,2002:658-665.

二级参考文献16

  • 1董祥军,宋瀚涛,姜合,陆玉昌.基于最小兴趣度的正、负关联规则挖掘[J].计算机工程与应用,2004,40(27):24-25. 被引量:12
  • 2张倩,王治和,张国治.基于相关系数的正、负关联规则挖掘算法[J].陕西理工学院学报(自然科学版),2005,21(4):35-38. 被引量:9
  • 3王新.基于已存信息的知识发现更新方法[J].云南民族大学学报(自然科学版),2006,15(3):238-241. 被引量:1
  • 4AGRAWAL R. Mining association rules between sets of items in large database[ C ]//Proceeding of the 1993 ACM SIGM OD In- ternational Conference on Management of Data. New York: ACM Press,1993:207 -216.
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules [ C ]//Proceeding of the 20th VLDB Conference. Santia- go : Morgan Kaufmann, 1994:487 - 499.
  • 6CORNELIS C, YAN Peng, ZHANG Xing, et al. Minning postive and negative association rules from large databases [ C ]//2006 IEEE Conference on CIS. Bangkol : IEEE,2006 : 613 - 618.
  • 7BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market baskets : Generalizing association rules to correlations [ C ]/! Processing of the ACM SIGMOD Conference. New York : ACM, 1997:265 - 276.
  • 8SAVASERE A,OMIECINSKI E,NAVATHE S. Mining for strong negative association in a large database of customer transation [ C ]//In : Proceedings of the 1998 International Conference on Data Engineering. Orlando : IEEE, 1998:494 - 502.
  • 9WU Xindong,ZHANG C, ZHANG S. Mining both positive and negative associations rules [ C ]//Proceedings of the 19th ICML. New York : Springer Verlag,2002:658 - 665.
  • 10SHAIRO P. Discovery, analysis, and presentation of strong rules [ C ]//G Piatetsky Shapiro, W Frawley eds. Knowledge discovery in Databases. AAAI Press/MIT Press, 1991:229 - 248.

共引文献36

同被引文献8

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部