期刊文献+

以无穷远点为内点的区域的单叶性内径(英文) 被引量:2

On the Inner Radius of Univalency of Plane Domains Containing the Point ∞
原文传递
导出
摘要 研究了以无穷远点为内点的平面区域的Schwarz导数及pre-Schwarz导数单叶性内径问题,给出了一个pre-Schwarz导数单叶性内径下界公式的推广,还得到了一类正规圆弧三角形外部区域的Schwarz导数单叶性内径的精确值. The inner radius of univalency of plane domains which have ∞ as interior point by the Schwarzian derivative and the pre-Schwarzian derivative are studied. A formula for the lower bound of the inner radius by pre- Schwarzian derivative is generalized, and the inner radius for the exterior domains of a class of normal circular triangles by the Schwarzian derivative is also obtained.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期689-695,704,共8页 Journal of Fudan University:Natural Science
基金 Project supported by National Natural Science Foundation of China(10871047) Creation Foundation forGraduate Students(EYH1411041)
关键词 万有TEICHMÜLLER空间 PRE-SCHWARZ导数 SCHWARZ导数 单叶性内径 universal Teichmuller space pre-Schwarzian derivative Sehwarzian derivative inner radius of univalency
  • 相关文献

参考文献2

二级参考文献13

  • 1程涛,陈纪修.区域的对数导数单叶性内径[J].中国科学(A辑),2007,37(4):504-512. 被引量:9
  • 2Nehari Z. The Sehwarzian derivative and schlicht function[J]. Bull AMS,1949,55: 545-551.
  • 3Kraus gr. Uber den Zusammenhang einiger Charakteristiken eines einfaeh zusammendangenden Bereiehes mit der Kreisabbildung [J]. Mitt Math Sere Giessen, 1932,21:1-28.
  • 4Becker J. Lowersche differentialgleiehung und quasi-konform fortsetzbare schlichte funktionen[J]. J Reine Angew Math,1972,255: 23-43.
  • 5Becker J, Pommerenke Ch. Schlichttheitskriterien ang Jordangebietetialgle[J]. J Reine Angew Math,1986,27:75-82.
  • 6Lehtinen M. On the inner radius of univalency for non- circular domains[J]. Ann Acad Sci Fenn Ser A I Math,1980,5: 45-47.
  • 7Lehto O. Remarks on Nehari' s theorem about the Schwarzian derivative and schlicht functions[J]. J Anal Math,1979,36:184-190.
  • 8Lehtinen M. Angles and the inner radius of univalency[J]. Ann Acad Sci Fenn Ser A I Math, 1986,11:161-165.
  • 9Toshiyuki Sugawa.Inner Radius of Univalence for a Strongly Starlike Domain[J].Monatshefte für Mathematik.2003(1)
  • 10K. Astala,F. W. Gehring.Injectivity, the BMO norm and the universal Teichmüller space[J].Journal d’Analyse Mathématique.1986(1)

共引文献2

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部