期刊文献+

Contractibility of Hyperspaces C_k(X)

超空间C_k(X)的可缩性(英文)
下载PDF
导出
摘要 This paper proves the following results: let X be a continuum, let k, m ∈ N, and let B ∈ C m (X), consider the continuous surjection f k : C k (X) → C k (X). We define the mapping B : C k (X) → C k+m (X): by B (A) = f k (A) B. Then following assertions are equivalent: (1) The hyperspace C k (X) is g-contractible; (2) For each m ∈ N and for each B ∈ C m (X) the mapping B is a W -deformation in C k+m (X); (3) For each m ∈ N there exists B ∈ C m (X) such that the mapping B is a W -deformation in C k+m (X); (4) There exists m ∈ N such that for each B ∈ C m (X) the mapping B is a W -deformation in C k+m (X); (5) There exist m ∈ N and B ∈ C m (X) such that the mapping B is a W -deformation in C k+m (X).
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期526-529,共4页 数学季刊(英文版)
基金 Supported by the Department of Education Sichuan Province Foundation for Science Research(2006C041) Supported by the Anhui Provincial Foundation for Young Talents in College(2010SQRL158)
关键词 CONTINUUM HYPERSPACES g-contractible W -deformation mapping continuum hyperspaces g-contractible W -deformation mapping
  • 相关文献

参考文献6

  • 1BELLAMY D P. The Cone over the Cantor Set-continuous Maps from Both Directions[C]. Atlanta: Emory University, 1970, 8-25.
  • 2S B Nadler Jr. Some Problems Concerning Hyperspaces[C]. New York: Springer-Verlag, 1974: 190-197.
  • 3S B Nadler Jr. Hyperspaces of Sets[M]. New York: Marcel Dekker Inc, 1978.
  • 4KRZEMIFISKA I, PRAJS J R. A non-g-contractible uniformly path connected continuum[J]. Topology Applications, 1999, 91(7): 151-158.
  • 5ILLANES A. A Continnnm whose hyperspaces of subcontinua is not g-contractible[J]. Proc Amer Math Sot, 2001, 130: 2179-2182.
  • 6MACIAS S. On the hyperspace C n (X) of a continuum X[J]. Topology Appl, 2001, 109: 237-256.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部