期刊文献+

Existence of Positive Solution for a p-Laplacian System 被引量:1

p-Laplacian System方程组正解的存在性(英文)
下载PDF
导出
摘要 Using the fibering method introduced by Pohozaev, we prove existence of positive solution for a Diriclhlet problem with a quasilinear system involving p-Laplacian operator.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第4期549-555,共7页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(10771052, 10801090) Supported by the Henan Natural Science Foundation(2009B110009) Supported by the Henan Polytechnic University Science Foundation(B2008-56, 649106)
关键词 p-Laplacian system fibreing maps maximizing suquence p-Laplacian system fibreing maps maximizing suquence
  • 相关文献

参考文献8

  • 1ThLIN F, VLIN J. Existence and non-existence of nontrivial solutions for some nonlinear elliptic sys- tems[J]. Rev Mat Univ Complutense Madrid, 1993, 6: 153-164.
  • 2BERESTYCKI H, CAPUZZO DOLCETTA H, NIRENBERG L. Variational methods for indefinite super- linear homegeneous elliptic problems[J]. Nonlinear Differential Equations, 1995, 2: 553-572.
  • 3POHOZAEV S I. On one approach to nonlinear equations(in Russian)[J]. Dokl Akad Nauk, 1979, 247(20): 1327-1331 .
  • 4POHOZAEV S I. On a constructive method in calculus of variations(in Russian)[J]. Dokl Akad Nauk, 1988, 298(37): 1330-1333.
  • 5POHOZAEV S I. On fibering method for the solutions of nonlinear boundary value problems(in Russian)[J]. Trudy Mat Inst Steklov, 1990, 192: 146-163.
  • 6DRABEK P, POHOZAEV S I. Positive solutions for the p-Laplacian: application of the fibrering method[J]. Proc Roy Soc Edinburgh, 1997, 127(A): 703-726.
  • 7CL MENT Ph, FLECKINGER J, MITIDIERI E. Existence of positive solutions for quasilinear elliptic systems[J]. J Differentail Equations, 2000, 166(2): 455-477.
  • 8BOZHKOV Y , MITIDIERI E. Existence of multiple solutions for quasilinear systems via fibering method[J]. J Differentail Equations, 2003, 190(1): 239–267.

同被引文献29

  • 1DIENING L, NEKVINDA A. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces[M]. Milovy (Czech Republic): Masaryk University Press, 2004: 38-58.
  • 2JIKOV V V, KOZLOV S M, OLEINIK 0 A. Homogenization of Differential Operators and Integral Func?tionals[M]. Berlin: Springer-Verlag, 1994.
  • 3MANAsEVIC H R, MAWHIN J. Periodic solutions for nonlinear systems with p-Laplacian-like operators[J]. J Differential Equations, 1998, 145(2): 367-393.
  • 4MARCELLINI P. Regularity and existence of solutions of elliptic equations with (p, q )-growth conditions[J]. J Differential Equations, 1991, 90: 1-30.
  • 5FAN Xian-ling, HAN Xiao-you. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN[J]. Nonlinear Anal, 2004,59: 173-188.
  • 6FAN Xian-ling, ZHANG Qi-hu. Existence of solutions for p(x)-Laplacian Dirichlet problem[J]. Nonlinear Anal, 2003, 52: 1843-1852.
  • 7FAN Xian-ling, ZHAO Yuan-zhang, ZHAO Dun. Compact embeddings theorems with symmetry of Strauss?Lions type for the space wm,p(X) (fl)[J]. J Math Anal Appl, 2001, 255: 333-348.
  • 8WANG Xian-jun, YUAN Rong. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Anal, 2009, 70: 866-880.
  • 9ZHANG Liang, TANG Xian-hua, CHEN Jing. Infinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian[J]. Boundary Value Problems, 2011, 2011: 33.
  • 10DAI Guo-wei. Three solutions for a Neumann-type differential inclusion problem involving the p(x)?Laplacian[J]. Nonlinear Anal, 2009, 70: 3755-3760.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部