期刊文献+

差分型复杂过程全局进化方法

Evolutionary algorithm for complex-process optimization based on differential evolutionary strategy
下载PDF
导出
摘要 复杂过程全局进化算法是一种具有类似分散搜索的通用框架结构,能够高效完成全局搜索的新型进化算法。在该算法的基础上,提出了差分型复杂过程全局进化算法。差分型算法采用拉丁超立方体抽样生成多样性种群,并应用"最小欧几里德距离的最大值法"产生参考集Refset2,以保证参考集的多样性。采用差分变异和交叉策略替代原算法的线性合并,兼顾算法的收敛速度和种群的多样性。应用Nelder-Mead直接搜索法进行局部搜索,防止搜索过程在局部最优点附近反复。仿真结果表明差分型复杂过程全局进化算法,具有较高的搜索效率。 Evolutionary algorithm for complex-process optimization is a new global search evolutionary algorithm which has a similar flexible framework structure of scatter search. On this basis, evolutionary algorithm for complex-process optimization based on differen- tial evolutionary strategy is proposed. The set RefSet2 is built by selecting those individuals from diverse vectors which is generated by Latin hypercube uniform sampling with minimum Euclidean distance to set ReJSetl is the highest. To take account of convergence speed and population diversity, differential mutation and crossover strategy is used to replace linear combination method of the original algorithm. Nelder-Mead simplex algorithm is adopted to improve the trial solution generated at "go-beyond strategy" stages. The simu- lation results show that evolutionary algorithm for complex-process er search efficiency. optimization based on differential evolutionary strategy has high-
出处 《计算机工程与应用》 CSCD 2012年第8期24-27,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60374032) 北京市教委重点学科控制理论与控制工程(No.XK100080537)
关键词 差分 复杂过程 优化:进化方法 differential complex-process optimization evolutionary algorithm
  • 相关文献

参考文献11

  • 1Laguna M,Marti R.Scatter search:methodology and implementations in C[M].Netherlands:Kluwer Academic Publishers,2003.
  • 2王奕首,史彦军,滕弘飞.用改进的散射搜索法求解带平衡约束的圆形Packing问题[J].计算机学报,2009,32(6):1214-1221. 被引量:21
  • 3王晓晴,唐加福.基于分散搜索的零部件跨单元生产的单元管理方法[J].机械工程学报,2009,45(10):125-131. 被引量:7
  • 4Egea J A,Marti R,Banga J R.An evolutionary method for complexprocess optimization[J].Computers & Operations Research,2010, 37:315-324.
  • 5Molina J,Laguna M,Marti R, et al.SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization[J].INFORMS Journal on Computing,2005.
  • 6郑金华,罗彪.一种基于拉丁超立方体抽样的多目标进化算法[J].模式识别与人工智能,2009,22(2):223-233. 被引量:13
  • 7McKay M D, Beckman R J, Conover W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics, 1979,21 (2): 239-245.
  • 8Zitzler E, Deb K, Thiele L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation, 2000,8(2) : 173-195.
  • 9Nelder J A,Mead R.A simplex method for function minimization[J]. Computer Journal, 1965,7(4) :308-313.
  • 10Qin A, Suganthan P.Self-adaptive differential evolution algorithm for numerical opfimization[C]//Proceedings of 2005 IEEE Congress on Evolutionary Computation(CEC'2005) ,2005:1785-1791.

二级参考文献45

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部