期刊文献+

EMD-SDC方法在机载连接词语音识别系统中的应用 被引量:1

Application of EMD-SDC in airplane conjunction speech recognition system
下载PDF
导出
摘要 机载连接词语音识别系统与传统语音识别系统相比,具有背景噪声大,系统识别率要求高等特点。依据这些特点,提出了一种基于经验模态分解增强和位移差分倒谱特征的EMD-SDC连接词语音识别方法。经验模态分解的调频调幅特性,可以有效提高机载复杂噪声背景下的端点检测准确度,位移差分倒谱特征由语音帧的一阶差分谱连接扩展而成,能够更好地提取依赖于语言结构的时序信息。该方法对机载交通预警避撞系统提示语音库进行测试,实验结果表明,采用EMD-SDC方法的机载连接词语音识别系统,能够很好地克服机舱背景噪声干扰,在低信噪比条件下实现较高的识别率。 Compared with traditional speech recognition system, airplane conjunction speech recognition system has background noise, and requires a high recognition rate and so on. According to these features, this paper proposes a EMD-SDC method with empirical mode decomposition and shifted delta cepstral features. Empirical mode decomposition with characteristics of AM FM can substantially increase endpoint detection accuracy under complex airplane noise environment. Shifted delta cepstral which is composed of first-order differential spectral of the speech frames, can capture the time sequence information depending on the structure of the language well. This method is tested for airplane traffic collision avoidance system database, experimental result shows that the airplane conjunction speech recognition system with EMD-SDC method can overcome cabin background noise and achieve a higher recognition rate in the low SNR.
出处 《计算机工程与应用》 CSCD 2012年第8期137-140,共4页 Computer Engineering and Applications
基金 航空科学基金(No.2010ZC53028)
关键词 经验模态分解 位移差分倒谱 机载连接词语音识别 empirical mode decomposition shifted delta cepstral airplane conjunction speech recognition
  • 相关文献

参考文献7

  • 1Kohler M, Kennedy M.Language identification using shifted delta cepstra[C]//Midwest Symposium on Circuits and Systems, 2002: 69-72.
  • 2Rilling G.On empirical mode decomposition and its algorithms[C]// Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,2003.
  • 3Wilson B S.Better speech recognition with cochlear implants[J]. Nature, 1991,352: 236-238.
  • 4Sangwan A.Environmentally aware voice activity detector[C]//8th Annual Conference of the International Speech Communication Association, 2007.
  • 5郝杰,李星.网络电话语音识别中关键词的后验可信测度[J].清华大学学报(自然科学版),2002,42(7):885-888. 被引量:1
  • 6Lockwood P, Boudy J.Experiments with a Nonlinear Spectral Subtractor(NSS) ,hidden Markov models and the projection,for robust speech recognition in ears[J].Speech Communication, 1992,11:215-228.
  • 7李邵梅,刘力雄,陈鸿昶.实时说话人辨识系统中改进的DTW算法[J].计算机工程,2008,34(4):218-219. 被引量:20

二级参考文献10

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2李鹏怀,徐佩霞.基于DSP的嵌入式语音识别系统的实现[J].计算机工程,2005,31(16):160-162. 被引量:10
  • 3刘文举,孙兵,钟秋海.基于说话人分类技术的分级说话人识别研究[J].电子学报,2005,33(7):1230-1233. 被引量:5
  • 4[1]Junqua J C, Haton J P. Robustness in Automatic Speech Recognition Funda mentals and Applications [M]. Dordecht. The Netherlands: Kluwer Academic Publi shers, 1996.
  • 5[2]Rose R, Paul D. A hidden Markov model based keyword recognition system [A]. ICASSP [C]. Albuquerque, 1990: 129132.
  • 6[3]Young S R, Ward W. Recognition confidence measures for spontaneous spok en dialog [J]. Eurospeech, 1993, 2: 11771179.
  • 7[4]YANG Haorong,WANG Zuoying,LU Dajin. Pinyin N-best search in mandarin speech recognition [J]. Acta Electronica Sinica, 1999, 27(4): 5862.
  • 8[5]Bellman R E. Dynamic Programming [M]. Princeton NJ: Princeton Univ Pr ess, Princeton NJ, 1957.
  • 9[6]ITU-T recommendation G.723.1. Dual Rate Speech Coder for Multimedia Co mmunication Transmitting at 5.3 and 6.3 kbit/s [S].
  • 10崔光照,吴晓平,路康.基于改进的DTW算法的仿真与分析[J].福建工程学院学报,2004,2(2):149-151. 被引量:4

共引文献19

同被引文献10

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部