期刊文献+

基于区域生长与Hough变换的虹膜定位方法 被引量:5

Iris location method based on region growing and Hough transform
下载PDF
导出
摘要 快速、准确地定位虹膜是虹膜识别系统的关键。在分析了传统虹膜定位算法的基础上,提出了一种把区域生长与Hough变换相结合的虹膜定位方法,利用区域生长搜索虹膜的内边缘,根据图像的灰度变化规律,搜索位于外边缘的若干个点,利用Hough变换找出外边缘所在位置。实验结果表明,该方法易于实现,减少搜索的盲目性,可提高定位速度。 The key of iris recognition is locating iris quickly and accurately. Based on the analysis of the traditional iris localization algorithm, an iris location method which combines region growing and Hough transform is proposed. The inner boundary is searched by using region growing. A number of points at the outer boundary are sought based on the variation of gray. The location of outer boundary is found by the Hough transform. The results show that this algorithm is easy to realize, reduces the blindness of the search process, and improves the speed.
作者 梁艳 曾碧卿
出处 《计算机工程与应用》 CSCD 2012年第8期200-202,共3页 Computer Engineering and Applications
关键词 区域生长 HOUGH变换 虹膜识别 虹膜定位 region growing Hough transform iris recognition iris location
  • 相关文献

参考文献7

二级参考文献92

共引文献40

同被引文献37

  • 1苏菡,黄凤岗,贾迪野.基于DIS边缘检测和自适应边缘生长的图像分割方法[J].哈尔滨工程大学学报,2004,25(3):345-348. 被引量:3
  • 2王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 3田启川,潘泉,程咏梅,张洪才.基于过零检测的虹膜特征提取算法[J].电子与信息学报,2006,28(8):1452-1457. 被引量:12
  • 4Krzysztof C C,Jayaram K U.A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks[J].Computer Vision and Image Understanding,2011,115(1):721-734.
  • 5Gao Y,Kikiois R,Bouix S,et al.A 3D interactive multi-object segmentation tool using local robust statistics driven active contours[J].Medical Image Analysis,2012,16(6):1216-1227.
  • 6Hussein W B,Moaty A A,Hussein M A,et al.A novel edge detection method with application to the fat content prediction in marbled meat[J].Pattern Recognition,2011,44(12):2959-2970.
  • 7Kim D H,Kim H K,Ko S J.Spatial color histogram based center voting method for subsequent object tracking and segmentation[J].Image and Vision Computing,2011,29(12):850-860.
  • 8Rafiee G,Dlay S S,Woo W L.Region-of-interest extraction in low depth of field images using ensemble clustering and difference of Gaussian approaches[J].Pattern Recognition,2013,46(10):2685-2699.
  • 9Peter Z,Bousson V,Bergot C,et al.A constrained region growing approach based on watershed for the segmentation of low contrast structures in bone micro-CT images[J].Pattern Recognition,2008,41(7):2358-2368.
  • 10Wu Y N,Si Z Z,Gong H,et al.Learning active basis model for object detection and recognition[J].Compute Vision,2010,90(2):198-235.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部