期刊文献+

基于最优观测矩阵的压缩信道感知 被引量:12

Compressed Channel Estimation based on Optimized Measurement Matrix
下载PDF
导出
摘要 信道估计技术作为获得信道衰落信息的方法,是提高无线信道传输接收性能的关键技术。而物理多径信道固有的稀疏性,使得将压缩感知(CS)理论用于稀疏多径信道的估计成为可能。相比于传统的线性估计方法,压缩信道估计的优势在于考虑了信道的固有稀疏性,在训练序列数目较少的情况下,重构效果要明显优于传统的最小二乘估计方法;从另一个角度来说,在获得同样估计性能的情况下,压缩信道估计需要的训练序列长度也大大减少,提高了频谱资源利用率。本文在应用CS理论进行稀疏信道估计的过程中引入了最优观测矩阵,通过进一步减小随机观测矩阵的列向量相关性,使得信道估计的性能得到了进一步的改善。 Channel estimation which can acquire the channel fading information is a key technology to improve the performance at the receive node in wireless channel transmission.The inherent sparse feature of multi-path channel makes the CS theory(compressed sensing) for sparse multi-path channel estimation become possible.Compared to the traditional linear estimation method,the compressed sensing-based channel estimation method has taken the inherent sparseness of wireless channel into account.So in the case of short training sequence,the reconstruction of compressed sensing for channel estimation has a much better result than that with the traditional method of least square estimation.In another word,the length of training sequence needed in compressed channel estimation is shorter to gain the same estimation performance as the traditional one,which means the improving utilization of spectrum resources.This paper introduces a method to optimize the measurement matrix in the CS theory,and apply it to the compressed channel estimation.By reducing the correlation between the column vectors of the measurement matrix,it can lead a further improved performance in compressed channel estimation.
出处 《信号处理》 CSCD 北大核心 2012年第1期67-72,共6页 Journal of Signal Processing
基金 国家自然科学基金(60972039) 江苏省自然科学基金(BK2010077)资助项目
关键词 稀疏多径信道 最小二乘估计 压缩信道估计 最优观测矩阵 相关性 sparse multipath channel least square estimation compressed channel estimation optimized measurement matrix correlation
  • 相关文献

参考文献8

  • 1裴敏艳,成文婧,魏急波.基于正交训练序列的MIMO系统联合最大似然时频同步和信道估计[J].电子与信息学报,2010,32(3):633-637. 被引量:4
  • 2W.U.Bajwa,A.M.Sayeed,R.Nowak.Sparse multipath channels:Modeling and estimation,[J].IEEE Digital Signal Processing Workshop,2009,1:1 - 6.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4E Candes,J Romberg,T Tao.Robust uncertainty principles: Exact signal rehighly incomplete frequency information [J].IEEE Trans.on Information Theory,2006,52 (2):489-509.
  • 5R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 6E Candes.The restricted isometry property and its implications for compressed sensing[J].Academie des sciences, 2006,346(I):598-592.
  • 7I.S.Dhillon,R.W.Heath,Jr,and T.Strohmer,Design structured tight frames via alternating projection,IEEE Trans.Inf.Theory,Jan.2005 vol.51,no.1,pp.188-209.
  • 8Michael Elad.Optimized Projections for Compressed Sensing[J],IEEE Trans on signal processing,Dec.2007 vol.55,no.12.

二级参考文献91

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献713

同被引文献129

  • 1D. Cabric, S. Mishra, and R. Brodersen, "Implementation issues in spectrum sensing for cognitive radios", in Proc. Asilomar Conf. on Signals, Systems and Computers, vol. 1, Pacific Grove, California, USA, Nov. 2004: 772-776.
  • 2Zeng Y, and Liang Y. C. , "Maximum-minimum Eigen- value Detection for Cognitive Radio", The 18th Annual IEEE International Symposium on Personal, Indoor andMobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007: 1-5.
  • 3王颖喜,卢光跃,基于空间谱的频谱感知方法[C],第三届全国通信新理论与新技术学术大会,宁波,2009,10.
  • 4Wald A. , "Sequential Analysis", New York: Dover Pub- lications, 2004 : 1-224.
  • 5Donoho D L. Compressed Sensing [J]. IEEE Trans. On Information Theory, 2006, 52 (4) : 1289-1306.
  • 6E. Candes, Compressive Sampling [ C ]. Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, 3: 1433-1452.
  • 7E. Candes, Romberg J. Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. on Information Theory, 2006, 52 (2) : 489-509.
  • 8Baraniuk R. Compressive sensing [J]. IEEE Signal Pro- cessing Magazine, 2007, 24(4): 118-121.
  • 9Chen S B, Donoho D L, Saunders M A. Atomic Decom- position by Basis Pursuit [ J ]. SIAM Journal on Scientific Computing, 1998, 20(1) : 33-61.
  • 10Donoho D L, Elad M, Temlyakov V. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise [ J ]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.

引证文献12

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部