期刊文献+

再入航天器陶瓷拐角环防热计算与结构适用性分析 被引量:1

Thermal Calculation and Structural Applicability Analysis of Ceramic Aft Ring Applied on Reentry Spacecraft
下载PDF
导出
摘要 文章基于近地轨道及探月返回再入热环境,应用超高温陶瓷到再入航天器的典型防热结构,计算分析了再入过程中的防热结构温度场。利用温度场计算结果,再结合超高温陶瓷抗烧蚀性能以及结构设计与工艺性分析,就超高温陶瓷作为再入航天器防热结构的适用性进行了深入探讨。结果表明,由于超高温陶瓷的优良耐高温及耐烧蚀性能,在近地轨道及探月返回再入航天器防热结构上具有良好的应用前景。 Based on the thermal conditions during reentry from low-earth-orbit and lunar orbit,this paper presents the temperature fields of the ultra-high-temperature ceramics (UHTCs)as the typical thermal protection structure applied on the reentry spacecraft. Combined with the investigation of the ablation properties, the structure design as well as the processing technology,a further discussion is conducted in terms of the applicability of UHTCs on the reentry spacecraft. The results show that UHTCs could provide a favorable prospect to resist reentry condition from the low-earth-orbit and the lunar orbit due to their optimal thermal properties.
出处 《航天返回与遥感》 2012年第1期8-15,共8页 Spacecraft Recovery & Remote Sensing
基金 国家重大科技专项工程
关键词 返回再入 超高温陶瓷 防热结构 温度场 适用性 航天器 reentry ultra-high-temperature ceramics thermal protection structure temperature fields applicability spacecraft
  • 相关文献

参考文献9

  • 1Daryabeigi K,Walkers S P.Detection of Subsurface Material Separation in Shuttle Orbiter Slip-side Joggle Region of the WingLeading Edge Using Infrared Imaging Data from Arc Jet Tests[D].Langley Research Center,2009.
  • 2Ko W L,Gong L,Quinn R D.Reentry Thermal Analysis of A Generic Crew Exploration Vehicle Structure[D].NASA/TM-2007-214607.
  • 3Scharfer J W,Flood D T,Reese J J.Experimental and Analytical Evaluation of the Apollo Thermal Protection System UnderSimulated Reentry Conditions.Part I-II[D].NASA Aerotherm Final Report,No.67-16,1967.
  • 4Fahrenholtz W G,Hilmas G E,Talmy I G,et al.Refractory Diborides of Zirconium and Hafnium[J].Journal of the American CeramicSociety,2007(90):1347–1364.
  • 5Zhang X H,Hu P.Ablation Behavior of ZrB2-SiC Ultra High Temperature Ceramics under Simulated Atmospheric Re-entryConditions[J].Composite Sciences and Technology,2008(68):1718–1726.
  • 6Han J C,Hu P,Zhang X H,et al.Oxidation-resistant ZrB2-SiC Composites at 2200℃[J].Composites Sciences and Technology,2008(68):799–806.
  • 7Zhang X H,Li W J,Hong C Q,et al.A Novel Development of ZrB2/ZrO2 Functionally Graded Ceramics for Ultrahigh-temperatureApplication[J].Scripta Materialia,2008(59):1214–1217.
  • 8Scatteia L,Vecchio A D,Filippis F D.Prora-usv SHS:Development of Sharp Hot Structures Based on Ultrahigh TemperatureMetal Diborides Current Status[D].IAC-05-C2.3.05.
  • 9Monteverde F,Sayino R.Stability of Ultra-high-temperature ZrB2-SiC Ceramics under Simulated Atmospheric Re-entryConditions[J].Journal of the European Ceramic Society,2007(27):4797–4805.

同被引文献12

  • 1Dejarnette F R, Cheatwood F M, Hamilton H H, et al. A Review of Some Approximate Methods Used in Aerodynamic Heating Analyses[J]. Journal of Thermophysics and Heat Transfer, 1987, 1(1): 5-12.
  • 2Hamilton H H, Francis A G, Dejarnette F R. Approximate Method for Calculating Heating Rates on Three-dimensional Vehicles[J]. Journal of Spacecraft and Rockets, 1994, 31 (3): 345-354.
  • 3Basil H, DeJarnette F R, Zoby E V. Effect of Nose Shape on Three-dimensional Streamlines and Heating Rates[J]. Journal of Spacecraft and Rockets, 1993, 30(1): 69-78.
  • 4Moss J N, Zoby E V, Sutton K. Approximate Convective-heating Equations for Hypersonic Flows[J]. Journal of Spacecraft and Rockets, 1981,18(1): 64-70.
  • 5Yamamoto Y, Nagai S. CFD Analysis and Wind Tunnel Experiments of Hypersonic Shock-shock Interaction Heating for Two Hemi Sphere Cvlinder Problem[C]. AIAA 2002-0217 9.002.
  • 6Smart M, Suzhen Chen. CFD Investigation of Fin Aeroheating on a Hypersonic Projectile [C]. AIAA 2003-1240, 2003.
  • 7Brian R H, Richard A T. X-33 Aerodynamic and Aeroheating Computations for Wind Tunnel and Flight Conditions[C]. AIAA 99-4163, 1999.
  • 8Roe P L. Approximate Riemann Solver, Parameter Vectors and Differences Schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
  • 9Yoon S, Jameson A. Lower-upper Symmetric Gauss-sediel Method for the Euler and Navier-stokes Equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
  • 10Miller C G. Experimental and Predicted Heating Distributions for Biconics at Incidence in Air at Mach 10JR]. NASA-TP-2334, 1984.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部