期刊文献+

基于突发分离的自相似网络流量预测 被引量:4

Self-similar network traffic prediction based on burst decomposition
下载PDF
导出
摘要 网络流量预测在网络拥塞控制及资源分配中起着至关重要的作用。对于具有自相似性的网络业务流量,由于其存在较强突发,传统预测方法的预测精度普遍较低。本文针对存在高突发的网络流量数据,提出了一种基于数据分离的流量预测方法。具体来说,在预测步骤前,本方法首先通过控制图将网络流量中难以预测的突发流量进行有效的分离,从而得到突发流量和非突发流量两部分数据。之后分别采用人工神经网络和自适应模板匹配方法实现对非突发流量和突发流量的预测。最后通过对两部分预测结果的合并得到最终的预测结果。基于实际流量数据的实验结果表明:相较于传统流量预测方法,本文所提出的方法具有更高的流量预测精度。 Traffic prediction plays an important role for congestion control and resource allocation of network manage- ment. For self-similar network traffic, in virtue of aggregated burstiness on all time scales, the prediction accuracy of tradi- tional traffic prediction methods is generally low. In order to deal with the burstiness in traffic data, a burst decomposition based traffic prediction method is proposed in this paper. More specifically, before performing traffic prediction, the burst will be separated from the traffic by control chart, which leads to the decomposition of original traffic into the burst part and non-burst part. Then Artificial Neural Network (ANN) based method and adaptive template matching based method are used for the prediction of non-burst part and burst part respectively. Finally, the prediction results of original traffic are ob- tained through combining the predictions of the two parts. The real traffic based experimental results show that the prediction accuracy of the proposed method is higher than that of traditional methods.
出处 《信号处理》 CSCD 北大核心 2012年第2期158-165,共8页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60972061 61032004) 国家高技术研究发展计划("863"计划)资助项目(2008AA12A204 2008AA12Z307)
关键词 突发性 数据分离 流量簇 流量预测 self-similar data decomposition traffic cluster traffic prediction
  • 相关文献

参考文献14

  • 1Francesco Delli Priscoli,Dario Pompili.A demand-assignment algorithm based on a Markov modulated chain prediction model for satellite bandwidth allocation[J]. Wireless Networks,2009,15(8):999-1012.
  • 2Will E.Leland,Murad S.Taqqu,Walter Willinger, Daniel V.Wilson.On the self-similar nature of Ethernet traffic(extended version)[J].Networking,IEEE/ACM Transactions on,1994,2(1):1-15.
  • 3Tadafumi Yoshihara,Shoji Kasahara and Yulaka Takahashi. Practical Time-Scale Fitting of Self-Similar Traffic with Markov-Modulated Poisson Process[J].Telecommunication Systems,2001,17:185 -211.
  • 4Antonio Nogueira,Paulo Salvador,Rui Valadas,Antonio Pacheco.Markovian Modelling of Internet Traffic[J]. Lecture Notes in Computer Science,2011,5233:98-124.
  • 5Soderstrom,Torsten.Discrete Time Stochastic Systems-Esitmation and Control[M].2nd Edition.New York: Prentice-Hall,2002.
  • 6Shih Yu Chang,Hsiao-Chun Wu.Novel Fast Computation Algorithm of the Second-Order Statistics for Autoregressive Moving-Average Processes[J].IEEE Transactions on Signal Processing,2009,57(2):526-535.
  • 7Tan Man-Chun,Wong,S.C,Xu Jian-Min,Guan Zhan-Rong, Zhang Peng.An Aggregation Approach to Short-Term Traffic Flow Prediction[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(1):60-69.
  • 8Shu Yantai,Jin Zhigang,Zhang Lianfang,Wang Lei. Traffic prediction using FARIMA models[C],Proceedings of ICC'99,1999,2:891-895.
  • 9LI Rui,CHEN Jian-ya,LIU Yun-jie,WANG Zhen-kai.WPANFIS:combine fuzzy neural network with multiresolution for network traffic prediction[J].The Journal of China Universities of Posts and Telecommunications,2010,17(4):88-93. 被引量:3
  • 10V.Alarcon-Aquino,J.A.Barria.Multiresolution FIR neural -network-based learning algorithm applied to network traffic prediction[J].IEEE Transactions on Systems, Man,and Cybernetics,2006,36(2):208-220.

二级参考文献18

  • 1Feldmann A, Gilbert A, Willinger W, et al. The changing nature of network traffic: scaling phenomena. Computer Communication Review, 1998, 28(2): 5-29.
  • 2Leland W E, Taqqu M S, Willinger W, et al. On the self-similar nature of ethemet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15.
  • 3Paxson V, Floyd S. Wide area traffic: the failure of poisson modeling. IEEE/ACM Transactions on Networking, 1995, 3(3): 226-244.
  • 4Beran J, Sherman R, Taqqu M S, et al. Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 1995, 43(2/3/4): 1566-1579.
  • 5Crovella M E, Bestavros A. Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking, 1997, 5(6): 835-846.
  • 6Abry P, Flandrin P, Taqqu M S, et al. Wavelets for the analysis, estimation and synthesis of scaling data. Park K, Willinger W. Self-similar Network Traffic and Performance Evaluation. New York, NY, USA: John Wiley & Sons Inc, 2000:39-88.
  • 7Papagiannaki K, Taft N, Zhang Z L, et al. Long-term forecasting of Internet backbone traffic. IEEE Transactions on Neural Networks, 2005, 16(5): 1110-1124.
  • 8Wang X, Ren Y, Shan X M. WDRLS: a wavelet based on-line predictor for network traffic. Proceedings of the Global Telecommunications Conference (GLOBECOM'03), Vol 7, Dec 1-5, 2003, San Francisco, CA, USA. Piscataway, N J, USA: IEEE, 2003:4034-4038.
  • 9Luan Y Q. Multiresolution traffic prediction: combine RLS algorithm with wavelet transform. Proceedings of the International Conference on Information Networking (ICOIN'05), Jan 31-Feb 2, 2005, Jeju, Korea. LNCS 3391. Berlin, Germany: Springer-Verlag, 2005:321-331.
  • 10Zhao Q G, Fang X M, Li Q Z, et al. WNN-based NGN traffic prediction. Proceedings of the 7th International Symposium Autonomous Decentralized Systems (ISADS'05), Apr 4-8, 2005, Chengdu, China. Los Alamitos, CA, USA: IEEE Computer Society, 2005:230-234.

共引文献2

同被引文献28

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部