期刊文献+

语音重构的DCT域加速Landweber迭代硬阈值算法 被引量:19

Accelerated Landweber Iterative Hard Thresholding Algorithm in the DCT Domain for Speech Reconstruction
下载PDF
导出
摘要 重构信号的最基本理论依据是该信号在某个变换域是稀疏的或近似稀疏的。基于语音信号在DCT域的近似稀疏性,可以采用压缩感知(Compressed Sensing,CS)理论对其进行重构。压缩感知理论中的迭代硬阈值(Iterativehard thresholding,IHT)算法以其较好的性能被广泛用来重构信号,但其收敛速度比较慢,如何提高收敛速度,一直是迭代硬阈值算法研究的重点之一。针对压缩感知理论中的IHT算法收敛速度相当慢的问题,提出了语音重构的DCT域加速Landweber迭代硬阈值(Accelerated Landweber iterative hard thresholding,ALIHT)算法。该算法对原始语音信号做DCT变换,然后在DCT域将每一步Landweber迭代分解为矩阵计算和求解两步,通过修改其中的矩阵计算部分实现Landweber迭代加速,最后通过迭代硬阈值对信号做阈值处理。实验结果表明,加速Landweber迭代硬阈值算法加快了收敛速度、减少了计算量。 The basic theory of reconstruction signals is that the signals are sparse or approximate sparse in a transform do- main. Based on the approximate sparsity of speech signal in the DCT domain, compressed sensing theory is applied to recon- struct speech signal. The iterative hard thresholding (IHT) algorithm with good performances is widely used to reconstruct sig- nals, however, its convergence speed is too slow. How to improve the convergence speed of the iterative hard thresholding al- gorithm has been a hot topic. The accelerated Landweber iterative hard thresholding (ALIHT) algorithm in the DCT domain for speech reconstruction is proposed to solve the problem that the convergence speed is too slow when the iterative hard threshol- ding algorithm is applied to the compressed sensing. The accelerated Landweber iterative hard thresholding algorithm firstly transforms the original speech signal to its DCT domain, and then speeds up the convergence speed by discomposing the each one step of the Landweber iteration in the iterative hard thresholding algorithm into two steps as the matrix computation and so- lution in the DCT domain, and modifying the matrix computation step. The experimental simulations show that the accelerated Landweber iterative hard thresholding algorithm increases convergence speed and reduces the calculation measures.
出处 《信号处理》 CSCD 北大核心 2012年第2期172-178,共7页 Journal of Signal Processing
基金 重大基础研究973计划(2011CB302903) 国家自然科学基金项目(60971129)
关键词 加速Landweber迭代硬阈值 迭代硬阈值 Landweber迭代 压缩感知 语音重构 Accelerated Landweber iterative hard thresholding iterative hard thresholding Landweber iteration compressed sensing speech reconstruction
  • 相关文献

参考文献18

二级参考文献226

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2练秋生,孔令富.非抽样轮廓波变换构造及其在图像去噪中的应用[J].仪器仪表学报,2006,27(4):331-335. 被引量:11
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献967

同被引文献122

引证文献19

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部