期刊文献+

Kinematic optimization of 2D plunging airfoil motion using the response surface methodology

Kinematic optimization of 2D plunging airfoil motion using the response surface methodology
原文传递
导出
摘要 The propulsive efficiency of a plunging NACA0012 airfoil is maximized by means of a simple numerical optimization method based on the response surface methodology (RSM). The control parameters are the amplitude and the reduced frequency of the harmonic sinusoidal motion. The 2D unsteady laminar flow around the plunging airfoil is computed by solving the Navier-Stokes equations for three Reynolds number values (Re = 3.3× 10^3, 1.1×10^4, and 2.2 × 10^4). The Nelder-Mead algorithm is used to find the best control parameters leading to the optimal propulsive efficiency over the constructed response surfaces. It is found that, for a given efficiency level and regardless of the considered Re value, it is possible either to obtain high thrust by selecting a high oscillation frequency or to reduce the input power by adopting a low plunging amplitude. Key words: Plunging airfoil, Propulsive efficiency, Optimization, Response surface methodology (RSM) The propulsive efficiency of a plunging NACA0012 airfoil is maximized by means of a simple numerical optimization method based on the response surface methodology (RSM). The control parameters are the amplitude and the reduced frequency of the harmonic sinusoidal motion. The 2D unsteady laminar flow around the plunging airfoil is computed by solving the Navier-Stokes equations for three Reynolds number values (Re = 3.3 × 103, 1.1×104, and 2.2×104). The Nelder-Mead algorithm is used to find the best control parameters leading to the optimal propulsive efficiency over the constructed response surfaces. It is found that, for a given efficiency level and regardless of the considered Re value, it is possible either to obtain high thrust by selecting a high oscillation frequency or to reduce the input power by adopting a low plunging amplitude.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第2期105-120,共16页 浙江大学学报(英文版)A辑(应用物理与工程)
关键词 Plunging airfoil Propulsive efficiency OPTIMIZATION Response surface methodology (RSM) 跳入机翼;推进的效率;优化;反应表面方法论(RSM )
  • 相关文献

参考文献40

  • 1Anderson, J.M., Streitlien, K., Barrett, D.S., Triantafyllou,M.S., 1998. Oscillating foils of high propulsive efficiency.Journal of Fluid Mechanics, 360:41-72.
  • 2Bansmer, S., Radespiel, R., Unger, R., Haupt, M., Horst,P., 2010. Experimental and numerical Fluid-structureanalysis of rigid and flexible flapping airfoils. AIAAJournal, 48(9):1959-1974. [doi:10.2514/1.J050158].
  • 3Betz, A., 1912. Ein beitrag zur erklarung des segelfluges.Zeitschrift fur Flugtechnik und Motorluftschiffahrt,3:269-272 (in German).
  • 4Box, G.E.P., Draper, N.R., 2007. Response Surfaces, Mix-tures, and Ridge Analyses (2nd Ed.). John Wiley &Sons, Inc., USA.
  • 5Dickinson, M.H., Go¨tz, K.G., 1993. Unsteady aerodynamicperformance of model wings at low Reynolds numbers.Journal of Experimental Biology, 174:45-64.
  • 6Dickinson, M.H., Lehmann, F.O., Sane, S.P., 1999.Wing rotation and the aerodynamic basis ofinsect flight. Science, 284(5422):1954-1960.[doi:10.1126/science.284.5422.1954].
  • 7Ellington, C.P., 1984. The aerodynamics of hovering in-sect flight. I. The quasi-steady analysis. PhilosophicalTransactions of the Royal Society B: Biological Sciences,305(1122):1-15. [doi:10.1098/rstb.1984.0049].
  • 8Ellington, C.P., van den Berg, C., Willmott, A., Thomas,A.L.R., 1996. Leading edge vortices in insect flight.Nature, 384:626-630. [doi:10.1038/384626a0].
  • 9Garrick, I.E., 1936. Propulsion of a Flapping and OscillatingAirfoil. NACA Technical Report No. 567.
  • 10Haftka, R., Scott, E.P., Cruz, J.R., 1998. Optimizationand experiments: a survey. Applied Mechanics Review,51(7):435-448. [doi:10.1115/1.3099014].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部