期刊文献+

Synthesizing style-preserving cartoons via non-negative style factorization

Synthesizing style-preserving cartoons via non-negative style factorization
原文传递
导出
摘要 We present a complete framework for synthesizing style-preserving 2D cartoons by learning from traditional Chinese cartoons. In contrast to reusing-based approaches which rely on rearranging or retrieving existing cartoon sequences, we aim to generate stylized cartoons with the idea of style factorization. Specifically, starting with 2D skeleton features of cartoon characters extracted by an improved rotoscoping system, we present a non-negative style factorization (NNSF) algorithm to obtain style basis and weights and simultaneously preserve class separability. Thus, factorized style basis can be combined with heterogeneous weights to reynthesize style-preserving features, and then these features are used as the driving source in the character reshaping process via our proposed subkey-driving strategy. Extensive experiments and examples demonstrate the effectiveness of the proposed framework. We present a complete framework for synthesizing style-preserving 2D cartoons by learning from traditional Chinese cartoons. In contrast to reusing-based approaches which rely on rearranging or retrieving existing cartoon sequences, we aim to generate stylized cartoons with the idea of style factorization. Specifically, starting with 2D skeleton features of cartoon characters extracted by an improved rotoscoping system, we present a non-negative style factorization (NNSF) algorithm to obtain style basis and weights and simultaneously preserve class separability. Thus, factorized style basis can be combined with heterogeneous weights to re-synthesize style-preserving features, and then these features are used as the driving source in the character reshaping process via our proposed subkey-driving strategy. Extensive experiments and examples demonstrate the effectiveness of the proposed framework.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2012年第3期196-207,共12页 浙江大学学报C辑(计算机与电子(英文版)
基金 supported by the National Basic Research Program (973) of China (No. 2012CB316400) the National Natural Science Foundation of China (No. 60903134) the Natural Science Foundation of Zhejiang Province, China (No. Y1101129)
  • 相关文献

参考文献35

  • 1Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M., 2004. Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph., 23(3):584-591. [doi:10.1145/1015 706.1015764].
  • 2Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: an algo- rithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.,54(11):4311-4322. [doi:10.1109/TSP.2006.881199].
  • 3Alexa, M., Cohen-Or, D., Levin, D., 2000. As-Rigid-as-Pos- sible Shape Interpolation. Proc. SIGGRAPH, p.157-164. [doi:10.1145/344779.344859].
  • 4Brand, M., Hertzmann, A., 2000. Style Machines. Proc. SIGGRAPH, p.183-192. [doi:10.1145/344779.344865].
  • 5Bregler, C., Loeb, L., Chuang, E., Deshpande, H., 2002. Turning to the masters: motion capturing cartoons. ACMTrans. Graph., 21(3):399-407. [doi:10.1145/566654.566 595].
  • 6Chenney, S., Pingel, M., Iverson, R., Szymanski, M., 2002. Simulating Cartoon Style Animation. Proc. NPAR, p.133- 138. [doi:10.1145/508530.508553].
  • 7Freifeld, O., Weiss, A., Zuffi, S., Black, M.J., 2010. Contour People: a Parameterized Model of 2D Articulated Human Shape. Proc. CVPR, p.639-646. [doi:10.1109/CVPR.2010. 5540154].
  • 8Guan, P., Freifeld, O., Black, M., 2010. A 2D Human Body Model Dressed in Eigen Clothing. Proc. ECCV, p.285- 298.
  • 9Hoch, M., Litwinowicz, P.C., 1996. A semi-automatic system for edge tracking with snakes. Vis. Comput., 12(2):75-83. [doi:10.1007/s003710050049].
  • 10Hornung, A., Dekkers, E., Kobbelt, L., 2007. Character ani- mation from 2D pictures and 3D motion data. ACM Trans. Graph., 26(1):1-es. [doi:10.1145/1189762.1189763].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部