期刊文献+

直接正交鉴别保局投影算法 被引量:4

Direct orthogonal discriminant locality preserving projections method
原文传递
导出
摘要 针对保局投影(LPP)及其衍生出的算法在人脸识别时须先采用主成分分析(PCA)算法对高维样本降维后才能应用,本文基于正交鉴别保局投影(ODLPP,orthogonal discriminal locality pre-serving projection)算法,提出了一种直接ODLPP(DODLPP)算法,利用拉普拉斯矩阵性质进行了相应的矩阵分解,可直接从高维样本的原始空间中提取投影矩阵。为解决ODLPP算法的小样本问题,给出先求解局部类内散度矩阵的零空间,然后再最大化类间散度矩阵的求解思路。人脸库上的实验结果表明所提算法的有效性。 A series of feature extraction algorithms based on locality preserving projection have been pro- posed. PCA algorithm must be firstly used for high-dimensional samples when these algorithms are applied in face recognition. Therefore, by using the orthogonal discriminant locality preserving projection algorithm,a direct orthogonal discriminant locality preserving projection algorithm is proposed. Through the corresponding matrix decomposition according to the properties of the Laplacian matrix, the projection matrix can be directly extracted from the original high-dimensional spaee without using PCA algorithm as the first step. In order to solve the small sample size problem,the null space of the local withinclass scatter matrix is obtained and the between-class scatter matrix is maximized. Experimental results on face database demonstrate the effectiveness of the proposed method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第3期561-565,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60975009) 安徽理工大学青年教师科学研究基金资助项目
关键词 保局投影(LPP) 人脸识别 直接正交鉴别保局投影(DODLP)算法 拉普拉斯矩阵 locality preserving projection (LPP) face recognition direct orthogonal discriminant locality preserving projection (DODLPP) algorithm Laplacian matrix
  • 相关文献

参考文献16

  • 1He X F,Yan S C,Hu Y,et al.Face recognition using Lap-lacianfaces[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(3):328-340.
  • 2Yang J,David Z,Yang J Y,et al.Globally maximizing,lo-cally minimizing:unsupervised discriminant projectionwith applications to face and palm biometrics[J].IEEETransactions on Pattern Analysis and Machine Intelli-gence,2007,29(4):650-664.
  • 3Xu Y,Zhong A N,Yang J,et al.LPP solution schemes foruse with face recognition[J].Pattern Recognition,2010,43(12):4165-4176.
  • 4严慧,杨静宇.无监督的差分鉴别特征提取以及在人脸识别上的应用[J].计算机辅助设计与图形学学报,2009,21(11):1632-1637. 被引量:7
  • 5林克正,王慧鑫,卜雪娜,林晟.基于局部保持投影的鉴别最大间距准则[J].模式识别与人工智能,2010,23(2):178-185. 被引量:17
  • 6Lu G F,Lin Z,Jin Z.Face recognition using discriminantlocality preserving projections based on maximum margincriterion[J].Pattern Recognition 2010,43(3):3572-3579.
  • 7高志升,袁红照,杨军.融合CDI和LBP的人脸特征提取与识别算法[J].光电子.激光,2010,21(1):112-115. 被引量:19
  • 8杨利平,龚卫国,辜小花,李伟红,杜兴.完备鉴别保局投影人脸识别算法[J].软件学报,2010,21(6):1277-1286. 被引量:34
  • 9Cai D,He X F,Han J W.Orthogonal laplacianfaces forface recognition[J].IEEE Transactions on ImageProcess,2006,15(11):3608-3614.
  • 10Zhu L,Zhu S N.Face recognition based on orthogonaldiscriminant locality preserving projections[J].Neuro-computing,2007,70(9):1543-1546.

二级参考文献70

共引文献82

同被引文献39

  • 1Kokiopoulou E, Saad Y. Orthogonal neighborhood preser- ving projections:a projection-based dimensionality reduc- tion technique[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,2,9(12) ;2143-2156.
  • 2Cai D,He X F,Zhou K. Locality sensitive discriminant a- nalysis[A]. International Joint Conferences on Artificial Intelligence[C]. 200"7,708-713.
  • 3He X F,Cai D, Hang J W. Learning a maximum margin subspace for image retrieval[J]. IEEE Trans. on Knowl- edge and Data Engineering,2008,20(2) :189-201.
  • 4Wei B, Tao D C. Biased discriminant euclidean embed- ding for content-based image retrieval[J]. IEEE Transac- tions on Image Processing,2;O]O ,19(2) : 545-554,.
  • 5Cai H, Mikolajczyk K, Matas J. Learning linear discrimi- nant projections for dimensionality reduction of image de- scriptors[J]. IEEE Transactiions on Pattern Analysis and Machine Intelligence, 2010,33(2) : 338-352.
  • 6Shu X, Gao Y, Lu H. Efficient linear discriminant analysis with locality preserving for face recognition [J]. Pattern Recognition, 2012,45 (5) :1892-1898.
  • 7CUI Yan, FAN Li-ya. A novel supervised dimensionality reduction algorithm, Graph-based Fisher analysis [J] Pattern Recognition,2012,45(4) :1471-1481.
  • 8Wang L, Pang Y W, Sheng D Y, et al. An iterative algo- rithm for robust Kernel principal component analysis[-A:. Proc. of the 6th International Conference on Machine Learning and Cybernetics[C]. 2007,3484-3489.
  • 9JIA Cheng-cheng, WANG Su-jing, PENG Xu-jun, et al. In- cremental multMinear discriminant analysis using canoni- cal correlations for action recognition[J]. Neurocomput- ing, 2012,83 (4) .. 56-63.
  • 10Zhang T, Tao D, Li X, et al. A Unifying framework for spectral analysis based dimensionality reduction E A:. Proc. of International Joint Conference on Neural Network [C]. 2008,1670-1677.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部