摘要
定义了算子In:Inf=f(-1)n*f=[z/(1-z)n+1](-1)*f利用算子In刻画了4个函数类的新子类,证明了:S*n(γ)S*n+1(γ),Cn(γ)Cn+1(γ),Kn(β,γ)Kn+1(β,γ),K*n(β,γ)K*n+1(β,γ).
In this paper, operator In is defined as In:Inf=f(-1)n*f=[z/(1-z)n+1](-1)*f Then taking advantage of operator In, the new subclasses of the above-mentioned 4 classes are characterized. The following relations of these subclasses are proved: S*n(γ)S*n+1(γ),Cn(γ)Cn+1(γ),Kn(β,γ)Kn+1(β,γ),K*n(β,γ)K*n+1(β,γ).
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期26-28,共3页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
解析函数
星形函数
凸函数
Noor算子
近于凸函数
拟凸函数
analytic function
starlike function
convex function
Noor operator
close-to-convex function
quasi-convex function