期刊文献+

自适应OFDM系统中基于分布式压缩感知的CQI反馈方案 被引量:1

A Method for CQI Feedback Based on Distributed Compressed Sensing in Adaptive OFDM Systems
下载PDF
导出
摘要 提出了正交频分复用(OFDM)系统中基于分布式压缩感知的信道质量信息(CQI)反馈压缩机制。利用CQI的时间相关性、频率相关性以及空间相关性,提出了两种联合稀疏模型,并分别通过压缩感知算法和分布式压缩感知算法对反馈的数据进行压缩、重建。仿真结果表明,与压缩感知相比,分布式压缩感知算法在不增加终端复杂度的同时,能够显著地降低测量值的数目,从而达到降低系统反馈速率、提高吞吐量的目的。 A compressed mechnism for channel quality indication (CQI) feedback in OFDM systems is proposed based on distributed compressed sensing. Two joint sparse models are developed, in which the feedback data are compressed and reconstructed using compressed sensing (CS) and distributed compressed sensing (DCS) algorithms respectively. The simulation results have shown that, compared with CS, DCS can significantly decrease the number of measurement without increasing the complexity of terminals. In this way, the goal is reached that the feedback rate of system is decreased and the throughput is increased.
作者 高杨 宋荣方
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第1期104-108,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60972041 60872104) 江苏省高校自然科学基础研究计划重大项目(08KJD510001) 教育部博士点基金(200802930004) 东南大学移动通信国家重点实验室开放课题(N200809) 国家科技重大专项(2009ZX03003-006) 国家重点基础研究发展计划(973计划)(2007CB310607)资助项目
关键词 反馈 压缩感知 分布式压缩感知 正交频分复用 feedback compressed sensing distributed compressed sensing OFDM
  • 相关文献

参考文献11

  • 1STERNAD M, OTTOSSON T,AHLE' N A,et al. Attaining both coverage and high spectral efficiency with adaptive OFDM downlinks [ C ]// Proc IEEE Vehicular Technology Conference. Orlando, FL, 2003:2486 - 2490.
  • 2ERIKSSON T, OTrOSSON T. Compression of feedback for adaptive transmission and scheduling [ J ]. Proceedings of the IEEE,2007,95 (12) :2314 -2321.
  • 3SONG Biezhi, ZHANG Rui. Sparsity-based channel state information acquisition and feedback scheme for MIMO-OFDMA systems[C]//Global Mobile Congress. 2009.
  • 4GAO Huanqin, SONG Rongfang, Zhao Junxi. Compression of CQI feedback with compressive sensing in adaptive OFDM systems [ C]// Proc International Conference on Wireless Communications and Signal Processing (WCSP). 2010.
  • 5BARON D,WAKIN M B, SARVOTHAM S. Distributed Compressed Sensing[ R]. Rice University,2006.
  • 6BARON D, DUARTE M F. An information-theoretic approach to distributed compressed sensing [ C ]//Proc of the 43th Allerton Conference on Communication, Control and Computing. Monticello, IL,2005.
  • 7BARON D, DUARTE M F, SARVOTHAM S, et al. Distributed compressed sensing of jointly sparse signals[ C ]//Proc of the 39th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA,2005:1537 - 1541.
  • 8DUARTE M F, WAKIN M B, BARON D, et al. Universal distributed sensing via random projections [ C ]// Proc of the 5th International Conference on Information Processing in Sensor Networks ( IPSN ). 2006:177 - 185.
  • 9HAUPT J, BAJWA W U, RABBAT M, et al. Compressed sensing for networked data [ J ]. IEEE Signal Processing Magazine, 2008,25 (2) :92-101.
  • 10BARANIUK R G. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007,24 ( 4 ) : 118 - 121.

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部