摘要
提出了正交频分复用(OFDM)系统中基于分布式压缩感知的信道质量信息(CQI)反馈压缩机制。利用CQI的时间相关性、频率相关性以及空间相关性,提出了两种联合稀疏模型,并分别通过压缩感知算法和分布式压缩感知算法对反馈的数据进行压缩、重建。仿真结果表明,与压缩感知相比,分布式压缩感知算法在不增加终端复杂度的同时,能够显著地降低测量值的数目,从而达到降低系统反馈速率、提高吞吐量的目的。
A compressed mechnism for channel quality indication (CQI) feedback in OFDM systems is proposed based on distributed compressed sensing. Two joint sparse models are developed, in which the feedback data are compressed and reconstructed using compressed sensing (CS) and distributed compressed sensing (DCS) algorithms respectively. The simulation results have shown that, compared with CS, DCS can significantly decrease the number of measurement without increasing the complexity of terminals. In this way, the goal is reached that the feedback rate of system is decreased and the throughput is increased.
出处
《南京邮电大学学报(自然科学版)》
北大核心
2012年第1期104-108,共5页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
国家自然科学基金(60972041
60872104)
江苏省高校自然科学基础研究计划重大项目(08KJD510001)
教育部博士点基金(200802930004)
东南大学移动通信国家重点实验室开放课题(N200809)
国家科技重大专项(2009ZX03003-006)
国家重点基础研究发展计划(973计划)(2007CB310607)资助项目