期刊文献+

矩阵函数分解中的奇异积分算子的性质

Properties of Singular Integral Operators in the Matrix Functions Factorization Theory
下载PDF
导出
摘要 研究奇异积分算子的性质是解决矩阵函数分解理论的重要方法和工具,但矩阵函数分解理论往往受矩阵函数类所限制。通过改进Cauchy型积分算子的作用域,提出了赫尔德函数类矩阵函数分解和对应的Toeplitz算子的基本概念,得到了换位算子的紧性结论。在此类矩阵函数分解存在的条件下,利用经典的Riemann-Hilbert问题作为工具,获得了Toeplitz算子的可逆性、核空间的维数。 Deploring the properties of singular integral operators is an important method and tool for the research on matrix function factorization theory, which is often limited by matrix function classes. The matrix function factorization of H? lder function class and the concept of the companion Toeplitz operators are proposed based on the improvement of the Cauchy integral operatorg acting domain. The compactness of the commutator operator is proved. Using the classical RiemannHilbert problem as a tool, the reversibility of Toeplitz operator and the dimension on its kernel space are obtained.
出处 《南京邮电大学学报(自然科学版)》 北大核心 2012年第1期118-122,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60972041 61179027) 南京邮电大学引进人才项目(NY208070)资助项目
关键词 TOEPLITZ算子 换位算子 RIEMANN-HILBERT问题 矩阵函数分解 Toeplitz operator commutator operator RiemannHilbert problem matrix function factorization
  • 相关文献

参考文献14

  • 1GOHBERG I, KAASHOEK M A, SPITKOVSKY I M. An overview of matrix factorization theory and operator applications [ J ]. Operator Theory : Advances and Applications,2003,143 ( 1 ) : 1 - 102.
  • 2CLANCY K, GOHBERG I. Factorization of matrix functions and singurlar integral operators [ M ]. Boston : Birkhauser, 1981 : 91 - 112.
  • 3LITVINCHUK G S, SPITKOVSKY I M. Factorization of measurable matrix functions [ M ]. Basel: Birkhauser, 1987:55 - 66.
  • 4BASTOS M A, KARLOVICH Y I, SANTOS A F. Oscillatory Riemann-Hilbert problems and the Corona theorem[ J]. J Funct Analysis,2003,197( 1 ) :347 -397.
  • 5MIKLIN S G, PROSSDORF S. Singular integral operators [ M ]. Berlin : Spinger-Verlag, 1986 : 53 - 57.
  • 6GOHBERG I, KRUPNIK N. One-dimensional linear singular equations volume I general theory and applications [ M ]. Boston:Birkhauser, 1992:40 - 41.
  • 7LU Jianke. Boundary value problems for analytic functions [M]. Singapore : World Scientific, 1993 : 15 - 25.
  • 8郭国安,杜金元.一类实轴上向量边值问题与矩阵函数分解[J].武汉大学学报(理学版),2007,53(5):509-512. 被引量:1
  • 9DUDUCHAVA R, CHKADUA O. Pseudo differential equations on manifolds with boundary : Fredholm property and asymptotic [ J ]. Math Nach ,2001,222( 1 ) :79 - 139.
  • 10SANTOS A P. Approximation methods for convolution operators on the real line [ D ]. Chemnitz :TU chemnitz Fakulatat Mathematik ,1998.

二级参考文献20

  • 1Gohberg I,Kaashoek M A,Spitkovsky I M. An Overview of Matrix Factorization Theory and Operartor Application [J]. Operator Theory : Adv and Appl, 2003, (141) : 1-102.
  • 2Camara M C, Malheiro M T. Wiener-Hopf Factorization for a Group of Exponentials of Nilpotent Matrices [J]. Linear Algebra Appl,2000, (320) : 79-96.
  • 3Bastos M A, Karlovich Yu I,Santos A F. Oscillatory Riemann-Hilbert Problems and the Corona Theorem [J]. J Funct Analysis,2003,(197):347-397.
  • 4Chatamara M C, Lebre A, Speck F O. Meromorphic Factorization, Partial Index Estimates and Elastodynamical Diffraction Problems [J]. Math Nachr, 1992,(157):291-317.
  • 5Litvinchuk G S, Spitkovskii I M. Factorization of Measurable Matrix Functions [M]. Basel: Birkhauser Verlag, 1987.
  • 6Chkadua O, Duduchava R. Pseudodifferential Equations on Manifolds with Boundary: Fredholm Property and Asymptotic [J]. Math Nachr, 2001, (222) : 79- 139.
  • 7Mikhlin S G, Prossdorf S. Singular Integral Operators [M].Berlin : Springer-Verlag, 1986.
  • 8Muskhelishvili N I. Singular Integral Equations[M](2nd ed). New York:Dover Publications, 1992.
  • 9Lu Jianke. Boundary Value Problems for Analytic Functions [M]. Singapore : World Scientific, 1993.
  • 10Camara M C,Diogo C.Generalized Factorization and Corona Problems. http://preprint.math.ist.utl.pt/ files/pp03 ? 2006.pdf . 2007

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部