期刊文献+

考虑单向拉伸横向应变演化的本构模型材料参数测定 被引量:5

Parameters identification strategy of constitutive model considering transverse strain evolution in uni-axial tension
下载PDF
导出
摘要 有限元数值模拟的精度不但与本构模型的描述能力有关,而且与其材料参数的测定方法密切相关。该文以由Hill1948屈服函数和Swift等向强化模型组成的本构模型为例,比较了不同的材料参数测定方法对单向拉伸的轴向应力-轴向应变、横向应变-轴向应变试验数据的预测能力。参数测定方法采用了两种,一种是传统方法,即使用r值计算屈服函数系数,采用轧制方向单向拉伸应力-应变数据拟合强化模型参数;另一种是考虑单向拉伸横向应变演化的反向优化法,即使用不同方向单向拉伸轴向应力-轴向应变和横向应变-轴向应变试验数据,同时求解屈服函数和强化模型的材料参数。结果表明,当使用传统方法时,所得材料参数不能很好描述与轧制方向成45°方向的单向拉伸数据;当使用考虑单向拉伸横向应变演化的反向优化法时,所得材料参数能够较准确描述各个方向的单向拉伸力学性能。 The accuracy of numerical simulation based on finite element method is not only related to the constitutive model,but also closely depended on the parameters identification strategy.Taking the elasto-plastic constitutive model based on Hill1948 yield function and Swift isotropic hardening model as an example,the predicted directional Cauchy stresses and transverse strains were compared based on different parameters identification strategies.One identification strategies used was the traditional method with the anisotropic coefficients of yield function being calculated from constant r-values,and the parameters of hardening model being fitted from the uni-axial tensile Cauchy stress along rolling direction.Another strategy used was the inverse optimization method considering the transverse strain evolution in uni-axial tension with all the parameters of yield function and hardening model being inversely optimized from the experimental directional Cauchy stresses and transverse strains at the same time.The results show that,the traditional parameters identification strategy cannot well predict the Cauchy stress and transverse strain in uni-axial tension at 45° to the rolling direction.While,the inverse optimization method can accurately capture all the directional Cauchy stress and transverse strain due to the introduction of transverse strain evolution in parameters identification.
出处 《塑性工程学报》 CAS CSCD 北大核心 2012年第1期77-80,共4页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(11002105) 省部共建教育部重点试验室开放基金资助项目(10ZXZK03) 教育部博士点基金资助项目(200806981025)
关键词 本构模型 材料参数 数值模拟 反向优化 数字散斑 constitutive model material model parameters numerical simulation inverse method digital image correlation
  • 相关文献

参考文献8

  • 1刘迪辉,钟志华.Barlat 1991模型的材料参数反求[J].机械工程学报,2006,42(4):47-51. 被引量:12
  • 2肖煜中,陈军.金属板料冲压数值模拟中的宏观硬化模型研究现状[J].塑性工程学报,2009,16(4):51-58. 被引量:14
  • 3ZANG Shunlai,TENG Lai,GUO Cheng.Influence ofparameters identification of anisotropic yield functi-onon spring-back prediction in finite element simu-lationof sheet metal forming process[J].Advanced MaterialResearch,2011.189-193:1465-1471.
  • 4HU Weilong.Constitutive modeling of orthotropicsheet metals by presenting hardening-induced aniso-ot-ropy[J].International Journal of Plasticity,2007.23:620-639.
  • 5ZANG Shun-lai,Myoung-gyu Lee.A general yieldfunction within the framework of linear transformat-tion of stress tensors for the description of plastic-st-rain-induced anisotropy[C].The 8th International Con-ference and Workshop on Numerical Simulation of 3DSheet Metal Forming Process.AIP Conf.Proc.1383,2011:63-70.
  • 6张阳 臧顺来等.基于散斑应变测量法的薄板各向异性力学性能研究.材料科学工程中国科技论文在线,.
  • 7S L Zang,S Thuillier,A.Le Port,et al.Prediction ofanisotropy and hardening for metallic sheets in te-nsion,simple shear and biaxial tension[J].InternationalJournal of Mechanical Sciences,2011.53(5):338-347.
  • 8B M Chaparro,S Thuillier,L F Menezes,et al.Materialparameters identification:Gradient-based,genetic andhybrid optimization algorithms[J].Computational Ma-terial Science 2008.44:339-346.

二级参考文献65

  • 1Ohno N, Kachi Y. A constitutive model of cyclic plasticity for nonlinear hardening materials[J]. Journal of Applied Mechanics, Transactions of the ASME, 1986. 53 : 395-404.
  • 2Ristinmaa M. Cyclic plasticity model using one yield surface only [J]. International Journal of Plasticity, 1995. 11:163-181.
  • 3Lee M G, Kim D, Kim C, et al. A practical two-surface plasticity model and its application to spring-back prediction[J]. International Journal of Plasticity, 2007.23. 1189-1212.
  • 4Armstrong P J, Frederick C O. A Mathematical Representation of the Multi-axial Bauschinger Effect [R] CEGB Report RD/B/N 731, Central Electricity Generating Board, 1966.
  • 5Chaboehe J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2 (2) : 149-188.
  • 6Choi Y, Han C S, Lee J K, et al. Modeling multi-axial deformation of planar anisotropic elasto-plastic materials,part I.. Theory[J]. International Journal of Plasticity, 2006. 22 : 1745-1764.
  • 7Dafalias Y F. Orientational evolution of plastic orthotropy in sheet rnetals[J]. Journal of the Mechanics and Physics of Solids, 2000. 48 : 2231-2255.
  • 8Han C S,Choi Y, Lee J K,et al. A FE formulation for elasto-plastic materials with planar anisotropic yield functions and plastic spin[J]. International Journal of Solids and Structures, 2002.39: 5123-5141.
  • 9Bunge H J, Nielsen I. Experimental determination of plastic spin in polycrystalline materials[J]. Internation- al Journal of Plasticity, 1997. 13: 435-446.
  • 10Truong Qui K H, Lippmann H. On the impact of local rotation on the evolution of an anisotropic plastic yield condition[J]. Journal of the Mechanics and Physics of Solids, 2001.49 : 2577-2591.

共引文献23

同被引文献40

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部