期刊文献+

诱惑态量子密钥分配系统中统计涨落的研究 被引量:5

Analysis of statistical fluctuation in decoy state quantum key distribution system
原文传递
导出
摘要 针对实用的量子密钥分配(QKD)系统是基于强衰减的弱激光脉冲作为单光子源,光子数分束攻击极大限制了通信双方在非理想条件下QKD的传输距离和密钥生成率,采用大数定律对诱惑态协议中单光子的计数率、单光子增益和误码率分别进行统计涨落分析,利用双诱惑态比较了1310 mn和1550 nm条件下,编码脉冲的长度为(N=10°-N=10^(12))实际QKD协议中密钥的生成率与安全传输距离之间的关系、安全传输距离随编码长度的变化的关系,得出脉冲编码长度增大到N=10^(12)时,密钥的最大安全传输距离为135 km. Decoy state has proven to be a very useful method of significantly enhancing the performance of a quantum key distribution (QKD) system with practical light sources. The data-set size in practical QKD protocol is always finite, which will cause statistical fluctuations. The gain and the error rate of the quantum state are analyzed by considering absolutely statistical fluctuation. The relation between key generation rate and the secure communication distance is shown with exchanged quantum signal (N = 106 - 1012) by the method of two-decoy-state protocol under the condition that communication wavelength is 1310 nm (or1550 nm). The result indicates that the minimal number of exchanged quantum signals increases obviously with the increase of transmission distance. The secure transmission distance is 135 km under the condition that quantum signal is 1012.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第5期36-39,共4页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973计划)(批准号:2010CB923202) 中央高校基本科研业务费(批准号:BUPT2009RC0709)资助的课题~~
关键词 诱惑态 量子密钥分配 统计涨落 decoy state, quantum key distribution, statistical fluctuation
  • 相关文献

参考文献4

二级参考文献43

共引文献39

同被引文献60

  • 1郑力明,王发强,刘颂豪.光纤色散与损耗对光量子密钥分发系统的影响[J].物理学报,2007,56(4):2180-2183. 被引量:9
  • 2邢书宝,李刚,薛惠锋.一次一密加密系统设计与实现[J].计算机技术与发展,2007,17(3):150-152. 被引量:13
  • 3Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing [C]//Processing of the IEEE International Conference on Computer System and Signal Processing. New York: IEEE, 1984: 175-179.
  • 4Ekert A K. Quantum Cryptography Based on Bel's Theorem [J]. Phys Rev Lett, 1991, 67(6) : 661-663.
  • 5Bennett C H. Quantum Cryptography Using Any Two Nonorthogonal States I-J2. Phys Rev Lett, 1992, 68(21)3121-3124.
  • 6Mayers D. Unconditional Security in Quantum Cryptography [J]. Journal of the ACM, 2001, 48(3): 351-406.
  • 7Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9-12,1984 pp175-179.
  • 8Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441.
  • 9Mayers D 2001 J. ACM 48 351.
  • 10Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput. 4 325.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部