期刊文献+

算子分裂法求解对流–扩散–反应方程 被引量:2

An Operator Splitting Scheme for Advection-Diffusion-Reaction Equation
下载PDF
导出
摘要 采用一阶精度的Lie分裂求解对流–扩散–反应方程,在每个时间步内,对于要求解的两个方程,关于时间分别采用特征线和欧拉方法进行离散,空间采用P2元进行离散.这两个方程,一个沿着特征线为常微分方程,另一个为典型的抛物型方程.同时导出了适合分裂方程的中间边界条件,分析了其分裂误差.数值结果表明,所提方法能够有效的求解对流–扩散–反应方程. The convection-diffusion-reaction equation is solved by virtue of the first order Lie splitting in this paper.At each time step,an ODE along characteristic and an parabolic equation need to be resolved after the methods of the characteristic and Euler discrete with respect to time.Intermediate boundary condition and splitting error are further conducted.The numerical result shows that the proposed method can be used to solve the convection-diffusion-reaction equation effectively.
出处 《工程数学学报》 CSCD 北大核心 2012年第1期89-95,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10971165 10901122 11101330)~~
关键词 算子分裂 特征线方法 中间边界条件 分裂误差 operator splitting; characteristic method; intermediate boundary condition; splitting error;
  • 相关文献

参考文献10

  • 1Lanser D,Verwer J G.Analysis of operator splitting for advection-diffusion-rection problems from airpollution modelling[J].Journal of Computational and Applied Mathematics,1999,111:201-216.
  • 2Blom J G,Verwer J G.A comparison of integration methods for atmospheric transport-chemistry prob-lems[J].Journal of Computational and Applied Mathematics,2000,126:381-396.
  • 3Liu J,Ewing R.An operator splitting method for nonlinear reactive transport equations and its implemen-tation based on DLL and COM[C] //Lecture Notes in Computer Science and Engeneering,Springer-Verlag,New York,2005:93-102.
  • 4Leveque R J.Intermediate boundary conditions for time split methods applied to hyperbolic partial differ-ential equations[J].Mathematics of Computation,1986,47:37-54.
  • 5Perot J B.An analysis of the fractional step method[J].Journal of Computational Physics,1993,108:51-58.
  • 6Yanenko N N.The Method of Fractional Steps[M].Berlin:Springer-Verlag,1971.
  • 7Aiyesimoju K O,Sobey R J.Process splitting of the boundary condition for the advection-dispersionequation[J].International Journal for Numerical Methods in Fluids,1989,9:235-244.
  • 8Khan L A,Liu L F.Numerical analysis of operator-splitting algorithms for the two-dimensional advection-diffusion equation[J].Computer Methods in Applied Mechanics and Engineering,1998,152:337-359.
  • 9Sportisse B.An analysis of operator splitting techniques in the stiff case[J].Journal of ComputationalPhysics,2000,161:140-168.
  • 10Verwer J G,Sportisse B.Note on operator splitting in the stiff case[R].Rep.MASR9830,CWI,Amsterdam,1998.

同被引文献27

  • 1MARSHALL R A. The distributed store railgun, its efficiency, and its energy store implications[J]. IEEE Transaction on Magnetics, 1997, 23(1) :582 - 583.
  • 2KAMRAN D, RAHIMZADEH M. Dynamic response and critical velocity studies in an electromagnetic railgun[J]. IEEE Transaction on Magnetics, 2007,43 (1) : 126 -127.
  • 3THOMAS G, ENGEL Jese M. Efficiency and scaling of constant inductance gradient DC electromagnetic launchers[J]. IEEE Transaction on Magnetics, 2006, 42(8) : 2044 - 2047.
  • 4DAVID A H. Analysis of startup behavior in a C- shaped armature using linked EMAP3D LDYNA3D finite element codes[J]. IEEE Transaction on Magnetics, 1999, 35(1): 60-62.
  • 5POWELL J D, ZIELINSKI A E. Ohmic heating in a double-taper sabot-armature[J]. IEEE Transaction on Magnetics, 2003, 39(1) : 153 - 157.
  • 6POWELL J D, ZIELINSKI A E. Observation and simulation of solid-armature railgun performance[J]. IEEE Transaction on Magnetics, 1999, 35(1): 84 -89.
  • 7张继民,张新周,汤红亮,曾广恩.Delft3D在海湾电厂温排水数值模拟中的应用[J].人民长江,2009,40(1):59-62. 被引量:8
  • 8李昕,翁春生.固体电枢电磁导轨炮非稳态电磁效应[J].南京理工大学学报,2009,33(1):108-111. 被引量:11
  • 9李昕,翁春生.U形电枢非稳态电磁场二维数值模拟[J].火炮发射与控制学报,2009,30(1):1-4. 被引量:4
  • 10申霞,洪大林,王鹏.基于POM的物质输运方程数值格式研究[J].海洋科学进展,2009,27(4):452-459. 被引量:2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部