期刊文献+

基于多级联不对称增强和遗传算法的人脸检测 被引量:1

Human face detection based on multi exit asymmetric boosting and genetic algorithm
下载PDF
导出
摘要 提出了一种基于多级联不对称增强和遗传算法的AdaBoost人脸检测方法。可把认假率和拒真率反馈给当前训练阶段,并通过阈值比较来控制级联层数和局部最佳弱分类器权值。用遗传算法训练选取的局部最佳弱分类器,实现用较少的弱分类器达到高检出率。仿真实验结果表明,该算法可以有效避免过拟合和特征冗余现象,获得较高的检测速度和精度。 A novel AdaBoost algorithm based on the multi exit asymmetric boosting and genetic algorithm is proposed in this paper. Both false acceptance rate and false rejection rate are fed back into current training stage, the cascade stages and the weight of local optimum weak classifiers are restricted by threshold comparison. The genetic algorithm with strong search ability is adopted for training local optimal weak classifiers, so most human faces in images and video sequences can be determined by less weak classifiers. Experimental results show that the proposed algorithm can achieve higher detection speed and more accuracy, effectively avoid overfitting and feature redundancy.
作者 张向鹏 魏江
出处 《电子设计工程》 2012年第5期122-125,共4页 Electronic Design Engineering
关键词 人脸检测 ADABOOST算法 多级联不对称增强 遗传算法 human face detection AdaBoost algorithm multi exit asymmetric boosting genetic algorithm
  • 相关文献

参考文献9

二级参考文献53

  • 1肖南峰,郑宇.人脸自动追踪与识别系统的设计与实现[J].华南理工大学学报(自然科学版),2004,32(9):1-5. 被引量:2
  • 2马勇,丁晓青.Real-Time Multi-View Face Detection and Pose Estimation Based on Cost-Sensitive AdaBoost[J].Tsinghua Science and Technology,2005,10(2):152-157. 被引量:4
  • 3邹伦开,周娅,王宏远.一种改进的视频序列质量合并算法[J].计算机工程与应用,2006,42(35):68-69. 被引量:1
  • 4Robert E S. Theoretical views of boosting[C]// Proceedings of European Conference on Computational Learning Theory. Nordkirchen, Germany : Springer-Verlag, 1999 : 1 - 10.
  • 5Thomas G D. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization [J].Machine Learning, 2000, 40(2): 139- 157.
  • 6Robert E S. The boosting approach to machine learning: an overview[C]// MSRI Workshop on Nonlinear Estimation and Classification. Berkeley, CA, USA: Springer-Verlag, 2002.
  • 7Paul A V, Michael J J. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA: IEEE Computer Society, 2001: 511-518.
  • 8HUANG Chang, AI Haizhou, LI Yuan, et al. High-performance rotation invariant multiview face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 671- 686.
  • 9Llew M, Jonathan B, Peter L B, et al. Boosting algorithms as gradient descent [C]// Proceedings of Advances in Neural Information Processing Systems. USA: MIT Press, 1999: 512-518.
  • 10LI Ling. Data Complexity in machine learning and novel classification algorithms[D]. USA: California Institute of Technology, 2006.

共引文献48

同被引文献11

  • 1Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kanai, USA, 2001, I: 511-518.
  • 2Viola P, Jones M. Robust Real-Time Face Detection. International Journal of Computer Vision, 2004, 57(2) : 137-154.
  • 3Lienhart R, Maydt J. An Extended Set of Haar-Like Features for Rapid Object Detection//Proc of the IEEE International Conference on Image Processing. New York, USA, 2002, I : 900-903.
  • 4Navabifar F, Yusof R, Emadi M. Using Rotated Asymmetric Haar- Like Features for Non-frontal Face Detection. Advanced Science Letters, 2013, 19(12) : 3520-3524.
  • 5Zhao X W, Chal X J, Niu Z H, et al. Context Modeling for Facial Landmark Detection Based on Non-adjacent Rectangle (NAR) Haar-like Feature. Image and Vision Computing, 2012, 30 ( 3 ) :.136-146.
  • 6Ge K B, Wen J, Fang B. Adaboost Algorithm Based on MB-LBP Features with Skin Color Segmentation for Face Detection//Proe of the IEEE International Conference on Wavelet Analysis and Pattern Recognition. Guilin, China, 2011:40-43.
  • 7Chang H L, Wen J. Entropy-Directed AdaBoost Algorithm with NBBP Features for Face Detection. Information Technology Journal, 2011, 10(8): 1518-1526.
  • 8Zakaria Z, Suandi S A. Face Detection Using Combination of Neural Network and Adaboost// Proc of the TENCON 2011-2011 IEEE Region 10 Conference. Bali, Indonesia, 2011 : 335-338.
  • 9郭耸,顾国昌,蔡则苏,刘海波,沈晶.基于特征融合与决策树级联结构的多姿态人脸检测[J].沈阳工业大学学报,2012,34(2):203-208. 被引量:5
  • 10何智翔,丁晓青,方驰,文迪.基于LBP和CCS-AdaBoost的多视角人脸检测[J].浙江大学学报(工学版),2013,47(4):622-629. 被引量:6

引证文献1

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部