期刊文献+

二代证人脸识别的多姿态虚拟样本生成方法 被引量:1

Multi-pose virtual sample generation for face recognition using the second generation ID card
下载PDF
导出
摘要 使用第二代身份证照片作为训练样本进行人脸识别属于典型的单样本问题,由于没有充分数量的训练样本,会造成常规的人脸识别算法识别率低下,甚至无效的问题。为此采用虚拟样本生成方法,并针对遇到姿态变化较复杂的人脸时,识别率不高的问题,提出了一种新的多姿态的虚拟样本生成方法,通过模拟人脸侧向旋转、俯仰和立体旋转等增加有效的训练样本,再使用鲁棒性较好的HMM进行人脸识别。在自建的身份证人脸库上进行测试,实验结果显示,该方法在一定程度上减弱了人脸姿态的变化对识别率的影响,并取得了较好的识别效果。 Using the Chinese second generation identity card's (2G-ID card) photo as the training sample for human face recognition is a typical single-sample problem. The insufficiency of training samples will cause the serious performance reduction of conventional face recognition algorithms. Virtual sample generation is an approach to transfer single sample to multi-sample thus re-work many face recognition methods. However, Existing virtual sample generation technology cannot efficiently deal with faces with diverse pose. A new multi-pose virtual sample generation technology is proposed. Through the face simulation of lateral rotation, pitching and three-dimensional pose variation of human's head to increase the training samples, then using HMM to realize face recognition, The experimental results show that the method can overcome the affect of changes in face pose to some extent, and can obtain higher recognition performance.
出处 《电子设计工程》 2012年第5期138-141,共4页 Electronic Design Engineering
关键词 人脸识别 第二代身份证 单样本 虚拟样本生成 隐马尔可夫模型 face recognition 2G-ID card single sample virtual sample generation hidden Markov model
  • 相关文献

参考文献7

  • 1任小龙,苏光大,相燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(3):213-217. 被引量:8
  • 2TAN Xiao-yang,CHEN Song-can,ZHOU Zhi-hua,et al.Facerecognition from a single image per person:a survey[J].Pattern Recogniton,2006,39(9):1725-1745.
  • 3SHAN Shi-guang,CAO Bo,GAO Wen,et al.Extend fisher-faces for face recognition from a single example image perperson[C]//Proc of The IEEE International Symposium onCircuits and Systems.Phoenix-Scottsdale,USA,2002,Ⅱ:81-84.
  • 4WU Jian-xin,ZHOU Zhi-hua.Face recognition with one trainingimage per person[J].Pattern Recognition Letters,2002(23):1711-1719.
  • 5CHEN Song-can,ZHANG Dao-qiang,ZHOU Zhi-hua.Enhanced(PC)2A for face recognition with one training image perperson[J].Pattern Recognition Letters,2004(25):1173-1181.
  • 6张生亮,陈伏兵,杨静宇.对单训练样本的人脸识别问题的研究[J].计算机科学,2006,33(2):225-229. 被引量:13
  • 7Samaria F,Young S.HMM based architecture for face identi-fication[J].Image and Computer Vsion,1994,12(8):537-543.

二级参考文献17

  • 1CLARKE R.Human identification in information systems:management challenges and public policy issues[J].Information Technology & People,1994,7(4):6-37.
  • 2DAVIES S G.Touching big brother:how biometric technology will fuse flesh and machine[J].Information Technology & People,1994,7(4):60-69.
  • 3NEWHAM E.The biometric report[R].New York:SJB Services,1995.
  • 4JAIN A K,BOLLE R,PANKANTI S.Biometrics:personal identification in networked society[M].Norwell,USA:Kluwer Academic Publishers,1999.
  • 5PHILLIPS P J,GROTHER P,MICHEALS R J,et al.FRVT 2002:Evaluation Report[EB/OL].(2003-03-15)[2008-08-16].http://www.frvt.org/FRVT2002/documents.htm.
  • 6SU Guangda,ZHANG Cuiping,DING Rong,et al.MMP-PCA face recognition method[J].Electronics Letters,2002,38(25):1654-1656.
  • 7DU Cheng,SU Guangda.Eyeglasses removal from facial images[J].Pattern Recognition Letters,2005,26(14):2215-2220.
  • 8PHILLIPS P J,SCRUGGS W T,O'TOOLE A J,et al.FRVT 2006 and ICE 2006 Large-Scale Results[EB/OL].(2007-03-10)[2008-08-16].http://www.frvt.org/FRVT2006/docs/FRVT2006andICE2006LargeScaleReport.pdf.
  • 9Huang Jian,Yuen Pong C,Chen Wen-Sheng,et al.Componentbased LDA Method for Face Recognition with One Training Sample [C].Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG'03)
  • 10Yang Jian,Zhang D,Yang Jing-Yu,et al.Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition [J].IEEE transaction on Pattern Analysis and Machine Intelligence,2004,26 (1)

共引文献19

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部