期刊文献+

NbB_2(0001)表面性质的第一性原理研究 被引量:5

First-principles Study on Characteristics of NbB_2(0001) Surface
下载PDF
导出
摘要 应用密度泛函理论的第一性原理的方法分析了两种不同终端的NbB2(0001)表面的几何结构和电子结构。结果表明:两种不同终端的(0001)表面结构弛豫主要发生在前三层,并且硼终端的表面弛豫程度小于铌终端表面的弛豫。表面能分析结果表明,终止于硼终端的(0001)表面结构在更宽的范围内具有较低的表面能,即硼终端的(0001)表面比铌终端的表面更稳定。进一步分析NbB2(0001)两种终端表面的电子结构表明:在金属铌和硼之间发生了电子转移,加强了化学键的相互作用,导致第一间层向内弛豫。对于铌终端的表面第一层铌转移到第二层的电子数比硼终端表面第二层铌转移到第一层的电子数多,这是导致铌终端表面弛豫程度大于硼终端表面的主要原因。 The geometry and electronic structure of two different terminations on NbB2(0001) surfaces were calculated by the first principles based on density functional theory.The results indicated that there were obvious relaxations at the top three layers for both termination surfaces,and the outermost interlayer relaxations for B-terminated surfaces are much smaller than those for Nb-terminated surfaces.The surface energy results showed that the surface energy of B-terminated was lower than Nb-terminated surface in most of the range of μslabB.Therefore B-terminated surface was more favorable than Nb-terminated surface.To further analyze electronic structures of NbB2(0001) surfaces,chemical bonding was strengthened due to electrons' transfer between Niobium and boron atoms.As a result the first layer was contracted and electrons transfer in Nb-terminated surface was gtreater than B-terminated surface,which is the main reason that relaxation of Nb-terminated surface was larger than B-terminated surface.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2012年第1期204-208,220,共6页 Journal of Synthetic Crystals
基金 辽宁省自然科学基金(20082192) 天津师范大学引进人才基金项目(5RL100)
关键词 密度泛函理论 NbB2(0001)表面 表面弛豫 表面能 density functional theory NbB2(0001)surfaces surface relaxation surface energy
  • 相关文献

参考文献7

  • 1Ihara H,Hirabayashi M,Nakagawa H.Band Structure and X-ray Pphotoelectron Spectrum of ZrB 2[J].Phys.Rev.B,1977,16:726-730.
  • 2Suehara S,Aizawa T,Sasaki T.Graphenelike Surface Boron Layer:Structural Phases on Transition-metal Diborides(0001)[J].Phys.Rev.B,2010,81:085423.
  • 3Vanderbilt D.Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J].Phys.Rev.B,1990,41:7892-7895.
  • 4王亚彬,黄育红,查钢强,介万奇.CdTe(110)表面原子与电子结构的第一性原理研究[J].人工晶体学报,2011,40(3):604-609. 被引量:4
  • 5王春雷,周理海,胡雪慧,孙海滨.TiB_2(0001)表面性质的密度泛函理论[J].中国有色金属学报,2008,18(1):145-150. 被引量:2
  • 6Monkhorst H J,Pack J D.Special Points for Brillouin-zone Integrations[J].Phys.Rev.B,1976,13:5188-5192.
  • 7Vajeeston P,Ravindran P,Ravi C,Asokamani R.Consistent Methodology for Calculating Surface and Interface Energies[J].Phys.Rev.B,2001,63:045115.

二级参考文献37

  • 1范广新,王明星,刘志勇,刘忠侠,宋天福,翁永刚,左秀荣,谢敬佩.加钛和加硼方式对铝合金的晶粒细化及其衰退行为的影响[J].中国有色金属学报,2004,14(9):1557-1563. 被引量:13
  • 2李拥华,徐彭寿,潘海滨,徐法强,谢长坤.GaN(100)表面结构的第一性原理计算[J].物理学报,2005,54(1):317-322. 被引量:14
  • 3Britt J, Ferekides C. Thin-film CdS/CdTe Solar Cell with l 5.8 % Efficiency [ J ]. Appl. Phys. Lett. , 1993,62 ( 22 ) :2851-2852.
  • 4Ferekides C, Marinskiy D, Viswanathan V, et al. High Ef~ciency CSS CdTe Solar Cells[ J]. Thin Solid Films,2000, 361-362:520-526.
  • 5Schlesinger T E, Toney J E, Yoon H, et al. Cadmium Zinc Telluride and Its Use As a Nuclear Radiation Detector Material[ J]. Mat. Sci. Eng. R, 2001,32(4-5) :103-189.3.
  • 6Zha G, Jie W, Li Q, et al. The Study on the Surface State of CdZnTe (110) Surface [ J ]. Appl. Su~ Sci. ,2006, 252 (24) :8421-8423.
  • 7Duff M C, Hunter D B, Burger A, et al. Effect of Surface Preparation Technique on the Radiation Detector Performance of CdZnTe [ J ]. Appl. Su(.. Sci. ,2008, 254(9): 2889-2892.
  • 8Duke C B, Paton A, Ford W K, et al. Dynamical Analysis of Low-energy-electron-diffraction Intensities from CdTe (110) [ J]. Phys. Rev. B, 1981, 24(6) :3320-3317.
  • 9CoweU P G, Carvalho V E. A LEED Study of CdTe (110) : the Conclusion of an Optimised Search[ J ]. J. Phys. C:Solid State Phys. , 1988,21 (16) :2983-2993.
  • 10Tsai M H, Dow J D, Wang R P, et al. Relaxation of Zinc-blende (110) Surfaces[J]. Phys. Rev. B,1989, 40(14) :9818-9823.

共引文献4

同被引文献43

  • 1廖克俊,王万录,张振刚,吴彬.热灯丝CVD金刚石膜硼掺杂效应研究[J].物理学报,1996,45(10):1771-1776. 被引量:14
  • 2刘以良,孔凡杰,杨缤维,蒋刚.金刚石延(111)面生长的第一性原理研究[J].物理学报,2007,56(9):5413-5417. 被引量:10
  • 3Cheng H F, Huang B B, Dai Y. Engineering BiOX (X = Cl, Br, I ) Nanostructures for Highly Efficient Photocatalytic Applications [ J ]. Nanoscale, 2014,6 : 2009 -2026.
  • 4Gondal M A, Chang X F, Amani Z H. UV-light Induced Photocatalytic Decolorization of Rhodamine 6G Molecules over BiOCl from Aqueous Solution [ J ]. Chemical Engineering Journal,2010,165 ( 1 ) :250-257.
  • 5Ye L Q, Deng K J, Xu F, et al. Increasing Visible-light Absorption for Photocatalysis with Black BiOCl [ J ]. Physical Chemistry Chemical Physics ,2012,14:82-85.
  • 6Pare B, Sarwan B, Jonnalagadda S B. The Characteristics and Photocatalytic Activities of BiOCl as Highly Efficient Photocatalyst[ J]. Journal of Molecular Structure,2012,1007 ( 11 ) : 196-202.
  • 7Zhang K L, Liu C M, Huang F Q, et al. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst[ J]. Applied Catalysis B : Environmental, 2006,68 ( 3 -4 ) : 125 -129.
  • 8Wu S J, Wang C, Cui Y F. Synthesis and Photocatalytic Properties of BiOCI Nanowire Arrays [ J ]. Materials Letters,2010,64(2) :115-118.
  • 9Yu J H, Wei B, Zhu L, et al. Flowerlike C-doped BiOCI Nanostructures: Facile Wet Chemical Fabrication and Enhanced UV Photocatalytic Properties [ J ]. Applied Surface Science,2013,284:497-502.
  • 10Yu C L, Cao F F, Li G, et al. Novel Noble Metal (Rh, Pd, Pt)/BiOX( Cl, Br, I) Composite Photocatalysts with Enhanced Photocatalytie Performance in Dye Degradation [ J ]. Separation and Purification Technology,2013,120 : 110-122.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部