期刊文献+

过完备字典稀疏表示的云图超分辨率算法 被引量:3

Nephogram super-resolution algorithm using over-complete dictionary via sparse representation
原文传递
导出
摘要 提出一种基于过完备字典稀疏表示的云图超分辨率算法。首先,联合训练针对低分辨率与高分辨率云图块的两个字典Dl和Dh,保证对应的低分辨率与高分辨率云图块关于各自的字典具有相似的稀疏表示;其次,通过求解优化问题,获得待处理云图每个低分辨率云图块关于Dl的稀疏表示,并将表示系数用于Dh以生成对应的高分辨率云图块;最后,运用最速下降算法,得到满足重构约束的高分辨率云图。红外与可见光云图的数值实验验证了本文算法的有效性,表明本文算法在视觉效果及PSNR指标上均优于插值方法。 Motivated by the fact that image patch can be sparse represented using a suitable over-complete dictionary, a nepho- gram super-resolution algorithm via sparse representation using over-complete dictionary is presented. During the experiment two dictionaries DI and Dh for the low-resolution and high-resolution nephogram patches were trained jointly in order to guar- antee that the low-resolution and high-resolution patch pair possesses similar sparse representations as to their own dictionary. Through solving optimization problem, the sparse representation for each low-resolution nephogram patch with respect to DI was obtained, and the representation coefficients were applied to Dh in order to generate the corresponding high-resolution nephogram patch. At the end of experiment the high-resolution nephogram which satisfies the reconstruction constraint was achieved by us- ing gradient descent algorithm. Numerical experiments for infrared and visual nephogram demonstrate the effectiveness of the proposed algorithm. Moreover, the proposed algorithm outperforms interpolation based methods in terms of visual quality and the Peak Signal to Noise Ratio (PSNR).
出处 《遥感学报》 EI CSCD 北大核心 2012年第2期275-285,共11页 NATIONAL REMOTE SENSING BULLETIN
基金 浙江省自然科学基金(编号:Y1080778 Y1111061) 浙江省公益性技术应用研究计划(编号:2010C33104) 国家教育部科学技术研究重点项目(编号:209155)~~
关键词 云图 超分辨率 过完备字典 字典训练 稀疏表示 nephogram, super-resolution, over-complete dictionary, dictionary training, sparse representation
  • 相关文献

参考文献13

  • 1Ricciardelli E,Romano F and Cuomo V.2008.Physical and statisti-cal approaches for cloud identification using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data.Remote Sensing of Environment,112(6):2741–2760.
  • 2Lee H,Battle A,Raina R and Ng A Y.2007.Efficient sparse coding algorithms In Advances in Neural Information Processing Systems(NIPS):801–808.
  • 3Bioucas-Dias J M and Figueiredo M A T.2007.A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration.IEEE Transactions on Image Processing,16(12):2992–3004.
  • 4Donoho D L.2006.For most large underdetermined systems of equa-tions,the minimal norm near-solution approximates the sparsest near-solution.Communications on Pure and Applied Mathematics,59(7):907–934.
  • 5Elad M and Aharon M.2006.Image denoising via sparse and redundant representations over learned dictionaries.IEEE Transactions on Image Processing,15(12):3736–3745.
  • 6冯鹏,魏彪,潘英俊,米德伶.基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析[J].光学学报,2008,28(11):2090-2096. 被引量:7
  • 7Provost J and Lesage F.2009.The application of compressed sensing for photo-acoustic tomography.IEEE Transactions on Medical Im-aging,28(4):585–594.
  • 8Chang H,Yeung D Y and Xiong Y M.2004.Super-resolution through neighbor embedding.IEEE Conference on Computer Vision and Pattern Classification(CVPR),1:275–282.
  • 9Merino M T,Nunez J.2007.Super-resolution of remotely sensed im-ages with variable-pixel linear reconstruction.IEEE Transactions on Geoscience and Remote Sensing,45(5):1446–1457.
  • 10Georgiev C G and Kozinarova G.2009.Usefulness of satellite watervapour imagery in forecasting strong convection:a flash-floodcase study.Atmospheric Research,93(1-3):295–303.

二级参考文献18

  • 1王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346. 被引量:11
  • 2李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 3E. J. Candes. Ridgelets:Theory and application [D]. USA: Stanford University, 1998
  • 4E. J. Candes. Harmonic analysis of neural networks [J]. Applied and Computational Harmonic Analysis, 1999, 6 (2) : 197-218
  • 5E. J. Candes, D. L. Donoho. Continuous eurvelet transform:Ⅰ. Resolution of the wavefront set[J]. Applied and Computational Harmonic Analysis, 2005, 19(2) : 162-197
  • 6E. J. Candes, D. L. Donoho. Continuous curvelet transform: Ⅱ. Discretization and frames[J]. Applied and Computational Harmonic Analysis, 2005, 19(2) : 198-222
  • 7M. N. Do, M. Vetterli. The eontourlet transform., an efficient directional multiresolution image representation[J]. IEEE Trans. on Image Processing, 2005, 14(12):2091-2106
  • 8M. N. Do. Directional multiresolution image representations [D]. Swiss Federal Institute of Technology, 2001
  • 9P. J. Burr, E. H. Adelson. The laplacian pyramid as a compact image code[J]. IEEE Trans. on Communication, 1983, 31(4) : 532-540
  • 10R. H. Bamberger, M. J. T. Smith. A filter bank for the directional decomposition of images: Theory and design [J]. IEEE Trans. on Signal Processing, 1992, 40(4): 882-893

共引文献6

同被引文献28

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部