期刊文献+

DSC法测层压后EVA交联度的可行性分析 被引量:2

下载PDF
导出
摘要 将二甲苯萃取法和DSC法对EVA交联程度的测试结果进行了对比,发现DSC法测试的结果不仅偏低,而且测试的结果不稳定。通过改变EVA的层压时间发现,层压10min后,二甲苯萃取法测得的EVA交联度基本趋于稳定,而DSC法测得的结果却一直增加,直到层压25min后才趋于稳定。
出处 《太阳能》 2012年第3期13-15,共3页 Solar Energy
  • 相关文献

参考文献11

  • 1孟彦龙,贾锐.低成本、高效率晶硅太阳电池的研究[J].半导体光电,2011,32(2):151-157. 被引量:3
  • 2周骏,孙永堂,孙铁囤,刘晓,宋伟杰.非晶硅光伏电池表面高效光陷阱结构设计[J].物理学报,2011,60(8):801-806. 被引量:7
  • 3李国雄,许妍,林安中,周良德.太阳电池中 EVA 胶层的性能研究[J].太阳能学报,1998,19(1):98-101. 被引量:16
  • 4李连春,唐舫成,汪加胜.高耐候太阳能电池封装胶膜的制备与性能研究[J].中国建设动态(阳光能源),2010(3):75-77. 被引量:2
  • 5Bianchi O, Oliveira R, Fiorio R, et al.Assessment of Avrami, Ozawa and Avram-zawa equations for determination of EVA crosslinking kinetics from DSC measurements[J].Polymer Testing, 2008, 27(6):722 - 729.
  • 6Reyes-Labarta J A, Olaya M M, Marcilla A.DSC study of transitions involved in thermal treatment of foamable mixtures of PE and EVA copolymer with azodicarbonamide[J].Journal of Applied Polymer Science, 2006, 102(3):2015 - 2025.
  • 7Stark W, Jaunich M.Investigation of Ethylene/Vinyl Acetate Copolymer (EVA) by thermal analysis DSC and DMA[J]. Polymer Testing, 2011, 30(2):236 - 242.
  • 8Cuddihy E F, Coulbert C D, Liang R H, et al. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules[R].NASA STl/Recon Technical Report, 1983.
  • 9IEC 62775, Cross-linking degree test method for Ethylene-Vinyl Acetate applied in photovoltaic modules-Differential Scanning Calorimetry (DSC)[S].
  • 10郑智晶.EVA胶膜交联度的研究[J].中国胶粘剂,1994,3(1):16-18. 被引量:4

二级参考文献51

  • 1Eschrich H, Elstner L, Bruns J. Numerical simulation of ACJ-HIT solar cells [C]//Proc. of the 12th European PVSEC, Amsterdam, 1994: 172-173.
  • 2Makoto T, Shingo O, Sadaji T, et al. Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules [ C ]//3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003: 955- 958.
  • 3Mikio T, Akira T, Eiji M, et al. Obtaining a higher Voc in HIT cells [J]. Progress in Photovoltaics: Research and Applications, 2005, 13 : 481-488.
  • 4Lammertz M D, Schwartz R J. The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight [J]. IEEE Trans. on Electron Devices, 1977, ED-24(4) :337-342.
  • 5Gee J M, Garrett Stephen E, Morgan William P. Simplified module assembly using back-contact crystalline-silicon solar cells [ C ]//26th IEEE Photovoltaic Specialists Conferences, Anaheim, California, 1995: 1085-1089.
  • 6Spath M, de Jong P C, Bennett I J, et al. A novel module assembly line using back contact soalr cells [C]//33rd IEEE Photovoltaic Specialists Conference, San Diego, 2008: 1-6.
  • 7Meijun L, Stuart B, Ujjwal D, et al. Interdigitated back contact silicon heterojunction solar cell and the effect of front surface passivation [J]. Appl. Phys.Lett. , 2007, 91: 063507.
  • 8Engelhart P, Harder N P, Merkle A, et al. RISE: 21.5% efficient back junction silicon solar cell with laser technology as a key processing tool[C]//4th World Conference on Photovoltaie Energy Conversion, 2006: 900-904.
  • 9Robert B, Susanne M, Jan S, et al. Back-junction back-contact n-type silicon solar ceils with screen-printed aluminum-alloyed emitter [J]. Appl. Phys. Lett. , 2010, 96: 263507.
  • 10Mulligan W P, Rose D H, Cudzinovic M J, et al. Manufacture of solar cells with 21% efficiency[C]// Proc. of the 19th European Photovoltaic Solar Energy Conference, Paris, Frandce, 2004.

共引文献27

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部