期刊文献+

椭圆截面金纳米管近场增强特性的研究 被引量:1

Study on the local field enhancement of elliptical gold nanotube
原文传递
导出
摘要 本文基于时域有限差分方法(finite difference time domain,FDTD)研究了入射光波长、入射光偏振方向、纳米管几何形状、管壁厚度及内核和包埋介质的变化对椭圆截面金纳米管近场分布特征的影响.研究发现,入射光波长为纳米管等离激元共振波长时,纳米管近场增强最大;入射光偏振方向与椭圆长轴夹角的增加会导致管内的场强迅速增大;椭圆管半短轴变大可以调节纳米管场强分布从两端高、中间低变化为均匀分布;内核和包埋介质介电常数的增大均会使得纳米管内部及周围场强逐渐减弱. The local electric field components of the elliptical gold nanotube are calculated based on the finite difference time domain (FDTD) method.It is find that when the wavelength of the incident light is just at a resonant wavelength,the local field enhancement of the gold nanotube reaches a maximum.The increase of the semiminor axis of the ellipse makes the distribution of the local field change from a distribution that is high in both sides and low in the middle part of the nanotube into a distribution that is uniform around the tube.With the increase of the angle between the incident polarization and the semimajor axis,the local electric field components increase rapidly.The increases of the dielectric constants for both the core and the embedding medium cause the local field around the nanotube to decrease.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第4期449-457,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11104319 11074124 10904052) 江苏省自然科学基金(批准号:BF2011592) 江苏高校优势学科建设工程资助的课题~~
关键词 局域表面等离激元共振 金纳米管 时域有限差分方法 近场增强 localized surface plasmon resonance gold nanotube finite difference time domain local field enhancement
  • 相关文献

参考文献2

二级参考文献48

  • 1Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590.
  • 2Maier S A, Brongersma M L, Kik P G, Meltzer S, Re-quicha A A G, Atwater H A 2001 Adv. Mater. 13 1501.
  • 3Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331.
  • 4Maier S A, Kik P G, Atwater H A, Mehzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229.
  • 5Zhang H X, Gu Y, GongQ H 2008 Chin. Phys. B 17 2567.
  • 6Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters ( Berlin : Springer).
  • 7Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668.
  • 8Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245.
  • 9Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497.
  • 10Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460.

共引文献14

同被引文献35

  • 1O’Regan B, Gratzel M 1991 Nature 353 737.
  • 2Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Gr?tzel M 2009 J. Am. Chem. Soc. 131 5930.
  • 3Gratzel M 2001 Nature 414 338.
  • 4Che H, Blaber M G, Standridge S D, DeMarco E J, Hupp J T, Ratner M A, Schatz G C 2012 J. Phys. Chem. C 116 10215.
  • 5Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner S M, Wiesner U 2010 J. Am. Chem. Soc. 133 172.
  • 6Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804.
  • 7Li S Q, Ye H A, Liu C Y, Dou Y F, Huang Y 2013 Chin. Phys. B 22 077302.
  • 8Huang Y, Ye H A, Li S Q, Dou Y F 2013 Chin. Phys. B 22 027301.
  • 9Hartland G V 2012 J. Phys. Chem. Lett. 3 1421.
  • 10Hagglund C, Apell S P 2012 J. Phys. Chem. Lett. 3 1275.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部