期刊文献+

一类分数阶常微分方程的数值解 被引量:1

Numerical Solutions for a Class of Fractional Ordinary Differential Equations
下载PDF
导出
摘要 针对一类分数阶常系数线性常微分方程,基于降阶的思想,通过转换将其转化为低阶的分数阶方程组的形式,构造了一种新的数值解法,给出了具体的计算格式,并通过数值算例验证了算法的有效性. The numerical solution of a class of fractional differential equations was obtained by reduc tion of the problem to a system of fractional differential equations. Numerical examples were given to il lustrate the high efficiency of the method.
作者 王磊
出处 《滨州学院学报》 2011年第6期27-30,共4页 Journal of Binzhou University
基金 国家自然科学基金项目(10971018) 滨州学院青年人才创新工程科研基金项目(BZXYQNLG201010)
关键词 分数阶常微分方程 CAPUTO分数阶导数 降阶法 数值解 fractional ordinary differential equation Caputo fractional derivative method of reductionof order numerical solution
  • 相关文献

参考文献6

  • 1Miller K,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Equations[M].New York:John Wiley and Sons Inc,1993.
  • 2Diethelm K,Ford J.Numerical solution of the Bagley-Torvik equation[J].BIT,2002,42:490-507.
  • 3Podlubny I.Fractional Differential Equations:An introduction to fractional derivatives,Fractionaldifferential equations,to methods of their solution and some of their applications[M].AcademicPress,1999.
  • 4Oldham K,Spnaie J.The Fractional Calculus[M].New York:Academic Press,1974.
  • 5李荣华.偏微分方程数值解法[M].北京:高等教育出版社,2006:151-152.
  • 6Diethelm K.An algorithm for the numerical solution of differential equations of fractional order[J].Elec Trans Numer Anal,1997(5):1-6.

共引文献3

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部