期刊文献+

基于粒子滤波的多传感器交互式多模型多机动目标跟踪 被引量:2

Interacting multiple model tracking algorithm of multiple sensor multiple maneuvering targets based on particle filter
下载PDF
导出
摘要 针对单传感器交互式多模型联合概率数据关联滤波算法(Interacting Multiple Model Joint Probabilistic Data Associa-tion Filtering,IMMJPDAF)在非线性情况下跟踪精度低,且对于非高斯问题不适用的情况,文中提出一种基于粒子滤波的多传感器交互式多模型多机动目标跟踪算法(Interacting Multiple Model Joint Probabilistic Data Association Particle Filtering,IMM-JPDA-PF).将IMM,JPDA和PF相结合,给出了两个传感器情况下的IMM-JPDA-PF算法,并且IMM-JPDA-PF()算法能够很容易地扩展到任意多个传感器的情况,在非线性非高斯条件下实现了杂波环境中利用多传感器对多机动目标的有效跟踪.仿真结果表明,多传感器IMM-JPDA-PF算法比单传感器的IMM-JPDA-PF算法具有更高的多机动目标跟踪精度. The interacting multiple model joint probabilistic data association filtering(IMMJPDAF) algorithm of single sensor has low tracking accuracy in nonlinear cases, and it is not appropriate for non-Gaussion situation. To solve the problems, an interacting multiple model target tracking algorithm of multiple sensor multiple maneu- vering targets based on particle filter(IMM-JPDA-PF) is proposed. Combined with IMM, JPDA and PF, the IMM-JPDA-PF algorithm of two sensors is given, which can be easily expanded to the case of any number of sen- sor. The multiple sensor IMM-JPDA-PF algorithm can track efficiently multiple maneuvering target with multiple sensor under the condition of nonlinear non-Gaussion in clutter environment. Simulation results demonstrate that the multiple sensor IMM-JPDA-PF algorithm has higher PF algorithm. tracking accuracy than that of single sensor IMM-JPDA-
作者 章飞 孙睿
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2011年第6期575-581,共7页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 海军装备预研基金资助项目(2010401010202)
关键词 交互式多模型 联合概率数据关联 多目标跟踪 粒子滤波 多传感器 interacting multiple model joint probabilistic data association multiple targets tracking particlefilter multiple sensor
  • 相关文献

参考文献11

  • 1Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J ]. IEEE Transactions on Automatic Control, 1988, 33(8): 780-783.
  • 2Bar-Shalom Y, Chang K C, Blom H A P. Tracking a maneuvering target using input estimation versus interacting multiple model algorithms [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25 (2) : 296 - 300.
  • 3Daeipour E, Bar-Shalom Y. An interacting multiple model approach for target tracking with glint noise [ J ]. IEEETransactions on Aerospace and Electronic Systems, 1995, 31(2) : 706 -715.
  • 4Daeipour E, Bar-Shalom Y. IMM tracking of maneuvering targets in the presence of glint[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34 ( 3 ) : 996 - 1003.
  • 5Boers Y, Driessen J N. Interaeting multiple model particle filter[ C ]. lEE Proceedings-Radar Sonar Navigation, 2003, 150(5): 344 -349.
  • 6Kirubarajan T, Bar-shalom Y, Blair W D. IMMPDAF for radar management and tracking benchmark with ECN [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4) : 1115 -1133.
  • 7Morelande M R, Challa S. Manoeuvring target tracking in clutter using particle filters [ J ]. IEEE Transactions on Aero and Electronic Systems, 2005, 41 ( 1 ) : 252 - 270.
  • 8Bing C, Tugnait J K. Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed - lag smoothing [ J ]. Automatica, 2001, 37 (2) : 239 - 249.
  • 9Puranik S P, Tugnait J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43 ( 1 ) : 23 - 35.
  • 10Tugnait J K. Tracking of multiple maneuvering targets in clutter using multiple sensors, IMM, and JPDA coupled filtering[J]. IEEE Transactions on Aerospace and Elec- tronic Systems, 2004, 40 (1) : 320 -330.

同被引文献17

  • 1Musicki D. Muhi-target tracking using multiple passive bearings-only asynchronous sensors [ J ]. IEEE Transac- tions on Aerospace and Electronic Systems, 2008, 44 (3) :1151 -1160.
  • 2Alouani A T, Gray J E, McCabe D H. Theory of distribu- ted estimation using multiple asynchronous sensors [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2) : 717 -722.
  • 3Pham N T, Huang W, Ong S H. Multiple sensor multiple object tracking with GMPHD filter[ C ]//lOth Internation- al Conference on Information Fusion. Quebec QC Cana- da:[s.n.l, 9-12, 2007:1 -8.
  • 4Mahler R. Multi-target Bayes filtering via first-order multi -target moment [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4) : 1152- 1178.
  • 5Vo B N, Singh S, Ma W K. Tracking multiple speakers using random sets [ C ]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal Que Canada: [ s. n. ], 17 - 21,2004, Ⅱ357 - Ⅱ360.
  • 6Vo B N, Ma W K. The Gaussian mixture probability hy- pothesis density filter [ J ]. IEEE Transactions on Signal Processing, 2006, 54( 11 ): 4091 -4104.
  • 7Mahler R. PHD filters of higher order in target number [ J 1. IEEE Transactions on Aerospace and Electronic Sys- tems, 2007, 43(4) : 1523 - 1543.
  • 8Vo B T, Vo B N, Cantoni A. The cardinalized probabil- ity hypothesis density filter for linear Gaussian multi - target models[ C ] // IEEE Conference on Information Sci- ences and Systems. Princeton NJ United states: [ s. n. ] 2006 : 681 - 686.
  • 9章飞,孙睿.基于粒子滤波的水下目标被动跟踪算法[J].江苏科技大学学报(自然科学版),2010,24(1):83-87. 被引量:5
  • 10卢建斌,肖慧,席泽敏,张明敏.相控阵雷达波束波形联合自适应调度算法[J].系统工程与电子技术,2011,33(1):84-88. 被引量:20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部