期刊文献+

外激励参数未知系统的同步控制及其参数识别 被引量:2

SYNCHRONIZATION CONTROL OF SYSTEMS WITH UNKNOWN PARAMETERS IN EXTERNAL EXCITING FORCE AND PARAMETERS IDENTIFICATION
下载PDF
导出
摘要 考虑外激励的振幅和频率未知的混沌系统.把系统未知参数扩张成系统的新的状态量,构造新的驱动系统.用参数自适应控制方法构造一个响应系统,使之与驱动系统的结构相同.基于级联系统的稳定性理论,通过两个步骤来设计控制器和参数自适应律,使得驱动—响应系统能够达到完全同步.当驱动—响应系统达到完全同步时,就可以识别出系统的未知参数振幅和频率.最后以受迫Duffing-VanderPol系统和扩音器系统为例验证了本文提出的方案是有效的. For a chaotic system with unknown amplitude and frequency in external exciting force,the unknown parameters were expanded to be the new state vector and a new drive system was constructed. By a parametric adaptive control,a response system with the same structure as the drive system was constructed. Based on the stability theory in the cascade system,controllers and the parametric adaptive law were designed by two steps, which make the drive-response systems achieve complete synchronization. Then the unknown amplitude and frequency of the drive system can be identified. The forced Duffing-Van der Pol oscillator and loudspeaker system were taken as examples to illustrate the effectiveness of the proposed method.
出处 《动力学与控制学报》 2012年第1期36-42,共7页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(61074012) 福建省资助省属高校专项(JK2009020) 福建省教育厅科技项目(JA11172)~~
关键词 参数未知系统 自适应控制 参数识别 system with unknown parameters adaptive control parameters identification
  • 相关文献

参考文献16

  • 1Wu X F,Cai J P,Wang M H.Master-slave chaos synchro-nization criteria for the horizontal platform systems via line-ar state error feedback control.Journal of Sound and Vibra-tion,2006,295:378~387.
  • 2Park J H.Chaos synchronization of a chaotic system via nonlinear control.Chaos,Solitons and Fractals,2005,25:579~584.
  • 3Wu X F,Zhao Y,Zhou S.Lag synchronization of chaotic Lur’e systems via replacing variables control.International Journal of Bifurcation and Chaos,2005,15:617~635.
  • 4陈保颖.线性反馈实现Liu系统的混沌同步[J].动力学与控制学报,2006,4(1):1-4. 被引量:30
  • 5Lei Y M,Xu W,Zheng H C.Synchronization of two chaot-ic nonlinear gyros using active control.Physics Letters A,2005,343:153~158.
  • 6王兴元,古丽孜拉,王明军.单向耦合混沌同步及其在保密通信中的应用[J].动力学与控制学报,2008,6(1):40-44. 被引量:9
  • 7Bowong S,Kakmeni F M M,Koina R.A new synchroniza-tion principle for a class of Lur’e systems with applications in secure communication.International Journal of Bifurca-tion Chaos,2004,14:2477~2491.
  • 8Dedieu H,Kennedy M P,Hasler M.Chaos shift keying:modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits.IEEE Trans.Circuits sys-tems-II,1993,40:634~642.
  • 9Tao C H,Liu X F.Feedback and adaptive control and syn-chronization of a set of chaotic and hyperchaotic systems.Chaos,Solitons and Fractals,2007,32:1572~1581.
  • 10单梁,李军,王执铨.参数不确定Liu混沌系统的自适应同步[J].动力学与控制学报,2006,4(4):338-343. 被引量:9

二级参考文献25

  • 1[1]Chen guanrong etc.Yet another Chaotic Attractor.International Journal of Bifurcation and Chaos,1999,9:1465~1466
  • 2[2]Jinhu Lv,Guanrong Chen,Suochun Zhang.Dynamical analysis of a new chaotic attractor.International Journal of Bifurcation and Chaos,2002,12:1001~1015
  • 3[3]Jinhu Lv,Guanrong Chen.A new chaotic attractor coined.International Journal of Bifurcation and Chaos,2002,12:659~661
  • 4[4]Liu chongxin etc.A new chaotic attractor.Chaos,Solitons and Fractals,2004,22:1031~1038
  • 5[5]Yassen MT.Chaos synchronization between two different chaotic systems using active control.Chaos,Solitons and Fractals,2005,23:131~140
  • 6[7]Chen Shihua etc.Synchronizing strict-feedback and general strict-feedback chaotic systems via a single controller.Chaos,Solitons and Fractals,2004,20:235~243
  • 7[1]Pecora L M,Carroll T L.Synchronization of chaotic systems.Physical Review Letters,1990,64 (8):821~830
  • 8[2]Carroll T L,Pecora L M.Synchronizing chaotic circuits.IEEE Transactions on Circuits and Systems,1991,38(4):453~456
  • 9[6]Murali K,Lakshmanan M.Chaos in nonlinear oscillators controlling and synchronization.Singapore:World Scientific,1996
  • 10[7]Kapitaniak T.Controlling chaos:Theoretical and practical methods in nonlinear dynamics.London:Academic Press,1996

共引文献40

同被引文献16

  • 1孟娟,王兴元.基于非线性观测器的一类混沌系统的相同步[J].物理学报,2007,56(9):5142-5148. 被引量:7
  • 2Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48 (6) : 988 - 1001.
  • 3Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(5) : 1465 - 1476.
  • 4Olfati-Saber R, Murray R M. Consensus problems in net- works of agents with switching topology and time-delays . IEEE Transactions on Automatic Control, 2004, 49 ( 9 ) : 1520 - 1533.
  • 5Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50 ( 5 ) : 655 - 661.
  • 6Zhou J, Xiang L, Liu Z. Synchronization in complex delayed dynamical networks with impulsive effects. Physica A, 2007, 384(2): 684 -692.
  • 7Zhou J, Wu Q, and Xiang L. Pinning complex delayed dynamical networks by a single impulsive controller. IEEE Transactions on Circuits and Systems-1: Regular .Papers, 2011, 58(12): 2882 -2893.
  • 8韩清凯,秦朝烨,杨晓光,陈希红,闻邦椿.双转子自同步系统的振动分析[J].振动工程学报,2007,20(5):534-537. 被引量:7
  • 9苟新超,唐世应,赵小军.滑动轴承存在冲击信号故障诊断案例[J].设备管理与维修,2009(1):54-56. 被引量:3
  • 10王安福.用部分变量控制和同步一个超混沌系统[J].武汉大学学报(工学版),2010,43(2):249-252. 被引量:2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部