期刊文献+

超积累植物壶瓶碎米荠的镉富集 被引量:20

Cadmium accumulation in hyper accumulator Cardamine hupingshanensis
下载PDF
导出
摘要 通过野外调查和人工栽培试验,研究了壶瓶碎米荠(Cardamine hupingshanensis)植株的镉含量。在自然条件下,壶瓶碎米荠植株平均镉含量随着生长时间的推移而增加;地上部镉含量变化范围为189~3 800 mg/kg,地上部与地下部镉含量的比值为1.13,变化范围为0.83~1.42;富集系数的平均值为209.10,变化范围为42.28~913.50。在人工栽培条件下,壶瓶碎米荠地上部镉含量随土壤中镉浓度的增加而增加,当土壤中镉含量超过50.00mg/kg,生物产量开始降低。在相同的土壤条件下,大棚栽培条件下壶瓶碎米荠植株富集镉能力和生物产量均好于露天栽培条件。表明,壶瓶碎米荠是一种生物产量高、富集镉能力强的超积累新材料,在土壤镉污染修复方面具有比较好的应用前景。 Under wild condition and artificial cultivation condition,the cadmium(Cd) concentration in Cardamine hupingshanensis was studied.In wild condition,the Cd content in the upground plant of C.hupingshanensis was increased gradually,the range being 189 to 3 800 mg/kg.The average ratio of upground Cd to underground Cd of C.hupingshanensis was 1.13,the range being 0.83 to 1.42.The average bioaccumulation factor was 209.10,the range being 42.28 to 913.50.In artificial cultivation condition,the Cd concentration in C.hupingshanensis was increased with the increase of Cd concentration in soil.When the Cd content in soil exceeded 50.00 mg/kg,the yield of C.hupingshanensis began to decrease.Under the same soil condition,the Cd accumulation ability and yield of C.hupingshanensis in greenhouse were much better than those in field.The results indicated that Cardamine hupingshanensis had considerable application potential for phytoremediation of Cd contamination.
机构地区 湖州师范学院
出处 《江苏农业学报》 CSCD 北大核心 2012年第1期76-79,共4页 Jiangsu Journal of Agricultural Sciences
基金 浙江省湖州市科技计划项目(2010YS20)
关键词 壶瓶碎米荠 富集植物 植物修复 Cardamine hupingshanensis hyper accumulator Cd phytoremediation
  • 相关文献

参考文献15

二级参考文献73

  • 1吴启堂,Morel,JL.一个定量植物吸收土壤重金属的原理模型[J].土壤学报,1994,31(1):68-76. 被引量:143
  • 2孔令韶 王美林 胡肄慧 等.辽宁红透山铜矿铜异常区的植物群落及其主要植物的铜含量特征[J].植物学报,1984,26(3):302-311.
  • 3胡肄慧 孔令韶 王美林 等.辽宁青城子矿区植物群落及植物和土壤中元素含量的关系[J].植物学报,1984,26(4):432-439.
  • 4Baker A J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In:Terry N, Banuelos G, eds. Phytoremediation of Contaminated Soiland Water. Florida: Lewis Publishers, 2000. 85-107.
  • 5Dahmani-Muller H, van Oort F, Balabane M. Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: A pot experiment. Environmental Pollution, 2001, 114(l): 77-84.
  • 6Kupper H, Lombi E, Zhao F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212:75-84.
  • 7Dahmani-Mulle H, van Oort F, Gelie B, et al. Strategies of heavy metal uptake by three plant species growing near a metal smelter.Environmental Pollution, 2000, 109:231-238.
  • 8Allen S E. Chemical Analysis of Ecological Material. 2nd ed. Oxford: Blackwell Science Publishers, 1989, 331-332.
  • 9Brown S L, Chaney R L, Angle .I S, et al. Phytoremediatation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality.1994, 23:1151-1157.
  • 10Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J & C Presl (Brassicaceae). New Phytologist,1994, 127: 61-68.

共引文献525

同被引文献483

引证文献20

二级引证文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部