期刊文献+

激光冲击强化过程中蒸气等离子体压力计算的耦合模型 被引量:5

A coupling model for computing plasma pressure induced by laser shock peening
下载PDF
导出
摘要 首先基于系统能量守恒条件,提出了一种计算蒸气等离子体压力的一维耦合计算模型。模型中不仅考虑了蒸气等离子体界面压力与质点速度的非线性效应,同时也考虑了界面烧蚀所致的运动速度,将蒸气等离子体的膨胀与约束介质的变形耦合。在耦合模型的基础上,采用显式差分计算程序与显式有限元计算程序LS-DYNA互相迭代求解的方法,对不同激光功率密度分布下的蒸气等离子体压力进行了计算。结果表明,计算结果与实验测量结果具有很好的一致性,证明了计算模型的合理性。 Pressure profile of plasma is one of the most important factors for the effects of laser shock peening. In the present research, a one-dimensional coupling model for computing plasma pressure is established based on energy conservation condition in the system, in which the interface vaporization velocity and the nonlinear relationship between the shock pressure and the surface particle velocity are considered. Then, the explicit difference program and the LS-DYNA package are used to calculate the plasma pressure for different laser power density with given time-history profile. The simulation re- sults show a good agreement with the experimental results, which indicates the consistency of the ana- lytical model. Therefore, an effective method is provided to predict the plasma pressure induced by la- ser shock peening.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2012年第1期1-7,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(10972228 11002150 91016025) 中国科学院科研装备研制项目(YZ200930)~~
关键词 流体力学 蒸气等离子体压力 耦合计算模型 激光冲击强化 质点速度 界面烧蚀 fluid mechanics pressure profile of plasma coupling analytical model laser shock pee- ning particle velocity interface vaporization velocity
  • 相关文献

参考文献14

  • 1Montross C S,TAO Wei,LIN Ye,et al.Laser shock processing and its effects on microstructure and properties ofmetal alloys:A review[J].International Journal of Fatigue,2002,24(10):1021-1036.
  • 2鲁金忠,罗开玉,冯爱新,钟俊伟,孙桂芳,张磊,钱晓明.激光单次冲击LY2铝合金微观强化机制研究[J].中国激光,2010,37(10):2662-2666. 被引量:34
  • 3LU Jin-zhong,LUO Kai-yu,ZHANG Yong-kang,et al.Grain refinement of LY2aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Material,2010,58(11):3984-3994.
  • 4HU Yong-xiang,YAO Zhen-qiang.Overlapping rate effect on laser shock processing of 1045steel by small spotswith Nd:YAG pulsed laser[J].Surface and Coatings Technology,2008,202(8):1517-1525.
  • 5Fairand B P,Clauer A H.Laser generation of high-amplitude stress waves in materials[J].Journal of AppliedPhysics,1979,50(3):1497-1502.
  • 6Fabbro R,Fournier J,Ballard p,et al.Physical study of laser-produced plasma in confined geometry[J].Journal ofApplied Physics,1990,68(2):775-784.
  • 7ZHANG Wen-wu,Yao Y L,Noyan I C.Microscale laser spock peening of thin films,Part 1:Experiment,model-ing and simulation[J].Journal of Manufacturing Science and Engineering,2004,126(1):10-17.
  • 8Sollier A,Berthe L,Peyre P,et al.Laser-matter interaction in laser shock processing[C] ∥First InternationalSymposium on High-power Laser Macroprocessing.2003:463.
  • 9Colvin J D,Ault E R,King W E,et al.Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data[J].Physics of Plasmas,2003,10(7):2940-2947.
  • 10WU Ben-xin,Shin Y C.A self-closed thermal model for laser shock peening under the water confinement regimeconfiguration and comparisons to experiments[J].Journal of Applied Physics,2005,97(11):113517-113527.

二级参考文献15

  • 1N. Aretakis, K. Mathioudakis, V. Dedoussis. Derivation of signatures for faults in gas turbine compressor blading [J].Control Engineering Practice, 1998, 6(8): 969-974.
  • 2A. King, A. Steuwer, C. Woodward et al.. Effects of fatigue and fretting on residual stresses introduced by laser shock peening [J].Materials Science and Engineering A, 2006, 435-436: 12-18.
  • 3C. S. Montross, L. Ye. Laser shock processing and its effects on microstructure and properties of metal alloys: a review [J].International J. Fatigue, 2002, 24: 1021-1036.
  • 4C. Rubio-González, J. L. Ocańa, G. Gomez-Rosas et al.. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy [J].Materials Science and Engineering A, 2004, 386: 291-295.
  • 5J. M. Yang, Y. C. Her, N. Han et al.. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes [J].Materials Science and Engineering A, 2001, 298: 296-299.
  • 6L. Harold, R. H. Michael. The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy [J].Materials Science and Engineering A, 2008, 477(1-2): 208-216.
  • 7M. Hakamada, Y. Nakamoto, H. Matsumoto et al.. Relationship between hardness and grain size in electrodeposited copper films [J].Materials Science and Engineering A, 2007, 457: 120-126.
  • 8A. D. Schino, J. M. Kenny. Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel [J].Mater. Lett., 2003, 57: 3182-3185.
  • 9L. Zhen, H. Hu, X. Y. Wang et al.. Distribution characterization of boundary misorientation angle of 7050 aluminum alloy after high-temperature compression [J].J. Materials Processing Technol., 2009, 209(2): 754-761.
  • 10Q. Li, Y. B. Xu, Z. H. Lai et al.. Dynamic recrystallization induced by plastic deformation at high strain rate in a Monel alloy [J].Materials Science and Engineering A, 2000, 276(1-2): 250-256.

共引文献33

同被引文献42

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部