摘要
现有关联规则更新算法都是基于支持度-置信度框架而提出的,仅针对大于最小支持度闭值的频繁项集进行挖掘。为了提高告警关联规则的完整性和准确性,在相关度AARSC算法基础上,提出了一种增量式挖掘UAARSC算法(Updating-AARSC)。该算法对增量计算进行了改进,可以发现频繁和非频繁告警序列间的关联规则。
The existing algorithms of association rule update are based on the framework of support-confidence and they mine only the frequent closure of the set value greater than the minimum support. To enhance the completeness and accuracy, the author presents in this paper an increment mining UAARSC algorithm based On the correlative AARSC algorithm. The algorithm improves incremental computation and may find the associative rules between the frequent and non-frequent alarm sequences.
出处
《计算机时代》
2012年第3期20-21,24,共3页
Computer Era
关键词
关联规则
数据发掘
滑动窗口
增量计算
associative rules
data mining
sliding window
incremental computation