期刊文献+

改进的多模型粒子PHD和CPHD滤波算法 被引量:13

Improved Multiple Model Particle PHD and CPHD Filters
下载PDF
导出
摘要 多模型粒子概率假设密度(Probability hypothesis density,PHD)滤波是一种有效的多机动目标跟踪算法,然而当模型概率过小时,该算法存在粒子退化问题,而且它对目标数的泊松分布假设会夸大目标漏检对其势估计的影响.针对上述问题,本文提出一种改进算法.该算法并不是简单地对模型索引进行采样,而是用粒子拟合目标状态的模型条件PHD强度,在不对噪声做任何先验假设的前提下,通过重采样实现存活粒子的输入交互,提高了滤波性能.在此基础上,进一步将算法在Cardinalized PHD(CPHD)的框架下加以实现,提高其目标数估计精度.仿真实验表明,所提算法在滤波性能和目标数估计精度方面均优于传统的多模型粒子PHD算法,具有良好的工程应用前景. The multiple model probability hypothesis density (PHD) filter is an effective algorithm for tracking multiple maneuvering targets. However, when the conditional mode probabilities have small values, there is a particle degenerate problem and the Poisson assumption for the target number distribution will lead to an exaggerating effect of missed detections on the target number estimation. To solve these problems, an improved algorithm is proposed in this paper, which approximates the model conditional probability hypothesis density of target states by particles, and makes the interaction between survival targets by resampling, without any a priori assumption of the noise. Further more, the improved algorithm is implemented in the framework of the cardinalized FHD (CPHD) filter, so as to improve the accuracy of target number estimation. The simulation results show that the improved algorithm has better performance in terms of state filtering and target number estimation, so that this algorithm will have good application prospects.
出处 《自动化学报》 EI CSCD 北大核心 2012年第3期341-348,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60871074)资助~~
关键词 多模型 粒子滤波 概率假设密度滤波 机动目标跟踪 Multiple model, particle filter (PF), probability hypothesis density (PHD) filter, maneuvering target tracking
  • 相关文献

参考文献17

  • 1McGinnity S,Irwin G W.Multiple model bootstrap fil-ter for maneuvering target tracking.IEEE Transactions on Aerospace and Electronic Systems,2000,36(3):1006-1012.
  • 2Gordon N J,Maskell S,Kirubarajan T.Efficient particle fil-ters for joint tracking and classification.In:Proceedings of the Signal and Data Processing of Small Targets.Orlando,USA:SPIE,2002.439-449.
  • 3王明辉,游志胜,赵荣椿,张建州.强干扰环境下性能优化的相互作用多模型-概率数据关联算法[J].自动化学报,2001,27(2):267-271. 被引量:3
  • 4Pollard E,Pannetier B,Rombaut M.Hybrid algorithms for multitarget tracking using MHT and GM-CPHD.IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):832-847.
  • 5Mahler R.Multitarget Bayes filtering via first-order multi-target moments.IEEE Transactions on Aerospace and Elec-tronic Systems,2003,39(4):1152-1178.
  • 6连峰,韩崇昭,刘伟峰,元向辉.基于SMC-PHDF的部分可分辨的群目标跟踪算法[J].自动化学报,2010,36(5):731-741. 被引量:27
  • 7Vo B N,Ma W K.The Gaussian mixture probability hy-pothesis density filter.IEEE Transactions on Signal Pro-cessing,2006,54 (11):4091-4104.
  • 8Li W,Jia Y M.Gaussian mixture PHD filter for jump Markov models based on best-fitting Gaussian approxima-tion.Signal Processing,2011,91(4):1036-1042.
  • 9Liu W F,Han C Z,Lian F,Zhu H Y.Multitarget state ex-traction for the PHD filter using MCMC approach.IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):864-883.
  • 10Pasha S A,Vo B N,Tuan H D,Ma W K.A Gaussian mixture PHD filter for jump Markov system models.IEEE Transac-tions on Aerospace and Electronic Systems,2009,45(3):919-936.

二级参考文献69

  • 1Mahler R. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
  • 2Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
  • 3Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing. 2006, 51(11): 4091-4104.
  • 4Mahler R. Detecting, tracking, and classifying group targets: a unified approach. In: Proceedings of the International Conference on Signal and Data Processing of Small Targets. Orlando, USA: SPIE, 2001. 217-228.
  • 5Maggio E, Taj M, Cavallaro A. Effcient multitarget visual tracking using random finite sets. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1016-1027.
  • 6Clark D, Ruiz I, Petillot Y, Bell J. Particle PHD filter multiple target tracking in sonar image. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 409--416.
  • 7Clark D, Godsill S. Group target tracking with the Gaussian mixture probability hypothesis density filter. In: Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Melbourne, AU: IEEE. 2007. 149-154.
  • 8Waxmann M J, Drummond O E. A bibliography of cluster (group) tracking. In: Proceedings of the International Conference on Signal and Data Processing of Small Targets. Orlando, USA: SPIE, 2004. 551-560.
  • 9Salmond D J, Gordon N J. Group and extended object tracking. In: Proceedings of IEE Colloquium on Target Tracking. London, UK: IEE, 1999. 1611-1614.
  • 10Koch W, van Keuk G. Multiple hypothesis track maintenance with possibly unresolved measurements. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 883-892.

共引文献53

同被引文献78

  • 1李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 2叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 3张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究[J].自动化学报,2007,33(9):941-946. 被引量:14
  • 4Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35 -45.
  • 5Alspach D L, Sorenson H W. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448.
  • 6Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space model. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25.
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings F: Radar and Signal Processing, 1993, 140(2): 107-113.
  • 8Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice. Heidelberg: Springer, 2001.
  • 9Kitagawa G. A self-organizing state-space model. Journal of the American Statistical Association, 1998, 93(443): 1203- 1215.
  • 10Hüseler M, Künsch H R. Approximating and maximizing the likelihood for a general state-space model. Sequential Monte Carlo Methods in Practice. Heidelberg: Springer, 2001. 159-175.

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部