期刊文献+

邮件网络协同过滤机制研究 被引量:4

Spam Collaborative Filtering in Enron E-mail Network
下载PDF
导出
摘要 基于Enron邮件集合探索真实邮件网络,揭示出邮件网络的无标度特性和有限小世界特性.在此基础上,依据用户间交互强度设计出垃圾邮件协同过滤机制,通过调整参数λ,用户可以决定主要是依靠自己还是其他用户协同进行垃圾信息过滤.算法即使在没有对用户个人阅读习惯充分训练的情况下,也可以通过基于交互强度的网络协同方式实现良好过滤.同时为了解决Enron数据集缺乏标注的情况,基于训练样本集W和测试样本集T独立同分布的假设,利用改进的EM(Expectation maximization)算法最小化W∪T集合上风险函数,给出了未知样本的一个良好标注.真实数据上的实验表明,同单机过滤和集成过滤方法相比,协同过滤能够提高平均过滤精度且方法简单易行. A Social network analysis in Enron corpus found that the real e-mail network was a scale-tree ana small woma in some degree. Then a spam collaborative filtering method was designed based on users'interaction. By adjusting the parameter λ, users can decide filtering spam by themselves or others or trade-off between them. Even in the absence of reading habits of users, the collaborative filtering method could achieve good performance. Because the Enron corpus was unlabeled, by adding i.i.d, assumption constraint to training data set W and test data set T, we labeled Enron corpus using improved EM (Expectation maximization) algorithm in a sense of minimum statistical risk in W U T. Experiment results showed that the collaborative filtering method is simple and effective which can steadily increase average accuracy compared with single machine and ensemble filterings.
出处 《自动化学报》 EI CSCD 北大核心 2012年第3期399-411,共13页 Acta Automatica Sinica
基金 国家自然科学基金(61001178 60905017 61175115) 国家软科学研究计划项目(2010GXQ5D317) 北京市自然科学基金(4102012 4112009 4102013 4123093) 北京市教育委员会科技发展计划面上项目(KM201210005024) 北京市教育委员会科技发展计划重点项目(KZ201210005007) 北京市高等学校人才强教深化计划"中青年骨干人才培养计划"项目(PHR201108016) 北京工业大学高层人才培养项目 北京工业大学校青基金资助~~
关键词 文本分类 邮件过滤 邮件网络 协同过滤 Text classification, spam filtering, e-mail network, collaborative filtering
  • 相关文献

参考文献36

  • 1Hambridge S,Lunde A.DON T SPEW—a set of guidelines for mass unsolicited mailings and postings(spam*) [Online],available:http://www.ietf.org/rfc/rfc2635.txt,January6,2012.
  • 2罗浩,方滨兴,唐剑琪.垃圾邮件问题及其处理方法[J].电信科学,2006,22(2):48-52. 被引量:2
  • 3Cormack G,Lynam T.TREC2005spam track overview.In:Proceedings of the14th Text Retrieval Conference.Mary-land,USA:NIST Special Publication,2005.1-17.
  • 4中国互联网协会反垃圾邮件(信息)中心.2010年第二季度中国反垃圾邮件状况调查报告 [Online],available:http://anti-spam.cn/pdf/201002report.pdf,2010.
  • 5Sahami M,Dumais S,Heckerman D,Horvitz E.A Bayesian approach to filtering junk e-mail[Online],avail- able:http://robotics.stanford.edu/users/sahami/papers-dir/spam.pdf,January10,2012.
  • 6Drucker H,Wu D H,Vapnik V N.Support vector machines for spam categorization.IEEE Transactions on Neural Net-works,1999,10 (5):1048-1054.
  • 7Delany S J,Cunningham P.An analysis of case-base editing in a spam filtering system.In:Proceedings of the7th Eu-ropean Conference on Advances in Case-based Reasoning.Madrid,Spain:Springer,2004.128-141.
  • 8Xu H,Yu B.Automatic thesaurus construction for spam filtering using revised back propagation neural network.Ex-pert Systems with Applications,2010,37(1):18-23.
  • 9Eyharabide V,Amandi A.Semantic spam filtering from personalized ontologies.Journal of Web Engineering,2008,7(2):158-176.
  • 10Tich P T,Nquyen T T,Tsai P,Kong X Y.BSPNN:boosted subspace probabilistic neural network for email security.Ar-tificial Intelligence Review,2011,35(4):369-382.

二级参考文献84

  • 1Yu Jiang,Bin-Xing Fang,Ming-Zeng Hu,Xiang Cui.Techniques for Determining the Geographic Location of IP Addresses in ISP Topology Measurement[J].Journal of Computer Science & Technology,2005,20(5):689-701. 被引量:2
  • 2[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 3[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 4[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 5[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 6[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 7[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 8[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 9[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 10[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.

共引文献162

同被引文献75

  • 1吴泓辰,王新军,成勇,彭朝晖.基于协同过滤与划分聚类的改进推荐算法[J].计算机研究与发展,2011,48(S3):205-212. 被引量:20
  • 2陈曦,陈华钧,顾珮嵚,张宁豫,陈娇彦,于彤.一种基于Hadoop的语义大数据分布式推理框架[J].计算机研究与发展,2013,50(S2):103-113. 被引量:15
  • 3Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web.2011:285-295.
  • 4MillerJ B N,Ried T,Konstan J A.GroupLens for Usenet:Experiences in applying collaborative filtering to a social information system[M].//From Usenet to CoWebs.Springer,2013:206-231.
  • 5Goldberg K,Roeder T,Gupta D,et al.Eigentaste:A constant time collaborative filtering algorithm[J].Information Retrieval,2001,4(2):133-151.
  • 6Gr M,Ar V C,Fortuna B V Z,et al.kNN versus SVM in the collaborative filtering framework[M].//Data Science and Classification.Springer,2006:251-260.
  • 7Hofmann T.Collaborative filtering via gaussian probabilistic latent semantic analysis[C]//Proceedings of the 26th Anaual In ternational ACM SIGIR Conference on Research and Development in Information Retrieval.2003:259-266.
  • 8Su X,Khoshgoftaar T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,2009:421-425.
  • 9Wang J,De Vries A P,Reinders M J.Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]//Proceedings of the 29th Anaual International ACM SIGIR Conference on Research and Development in Information Retrieval.2006:501-508.
  • 10Linden G,Smith B,York J.Amazon.com recommendations:Item-to-item collaborative filtering[J].Internet Computing,IEEE,2003,7(1):76-80.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部