期刊文献+

去除乘性噪声的重加权各向异性全变差模型 被引量:14

Iteratively Reweighted Anisotropic-TV Based Multiplicative Noise Removal Model
下载PDF
导出
摘要 恢复含乘性噪声的图像是当前图像处理的重要研究课题.本文提出基于迭代重加权的各向异性全变差(Total variation,TV)模型.新模型中,假定乘性噪声服从Gamma分布.正则项采用加权的各向异性全变差,其中,自适应权函数由期望最大(Expectation maximization,EM)算法得到.新模型在有效去噪的同时,较好地保留了图像的边缘和细节信息,同时能够有效地抑制"阶梯效应".数值实验验证了新模型的效果. Multiplicative noise removal is an important research topic on image processing. This paper proposes an iteratively reweighted anisotropic-total variation (TV) based model under the assumption that the multiplicative noise follows a Gamma distribution. The regularization term is the weighted anisotropic-TV regularizer. The weighting function incorporated in the regularization term is derived from the expectation maximization (EM) algorithm. The merits of this model are the preservation of geometrical structures of edges and the restraint of "staircase effect" while removing the noise. Numerical experimental results demonstrate the better performance of the proposed model.
出处 《自动化学报》 EI CSCD 北大核心 2012年第3期444-451,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60872138)资助~~
关键词 图像去噪 乘性噪声 期望最大算法 全变差 迭代重加权 Image denoising, multiplicative noise, expectation maximization (EM) algorithms, total variation (TV),iteratively reweighted method
  • 相关文献

参考文献21

  • 1霍春雷,程健,卢汉清,周志鑫.基于多尺度融合的对象级变化检测新方法[J].自动化学报,2008,34(3):251-257. 被引量:32
  • 2吴亮,胡云安.遥感图像自动道路提取方法综述[J].自动化学报,2010,36(7):912-922. 被引量:57
  • 3Aubert G,Aujol J.A nonconvex model to remove multiplica-tive noise.In:Proceedings of the1st International Conference on Scale Space and Variational Methods in Computer Vision.Ischia,Italy:Springer,2007.68-79.
  • 4Aubert G,Aujol J.A variational approach to removing multi-plicative noise.SIAM Journal on Applied Mathematics,2008,68 (4):925-946.
  • 5Jin Z M,Yang X P.Analysis of a new variation model for multiplicative noise removal.Journal of Mathematical Anal-ysis and Applications,2010,362(2):415-426.
  • 6Huang Y M,Ng M K,Wen Y W.A new total variation method for multiplicative noise removal.SIAM Journal on Imaging Sciences,2009,2(1):20-40.
  • 7Rudin L I,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms.Physica D:Nonlinear Phenomena,1992,60(1 -4):259-268.
  • 8Rudin L,Lions P L,Osher S.Multiplicative denoising and de-blurring:theory and algorithms.Geometric Level Set Meth-ods in Imaging,Vision and Graphics.New York:Springer,2003.103-119.
  • 9Geman S,Geman D.Stochastic relaxation,Gibbs distribu-tions,and the Bayesian restoration of images.IEEE Trans-actions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 10Li Y Y,Santosa F.A computational algorithm for minimiz-ing total variation in image restoration.IEEE Transactions on Image Processing,1996,5(6):987-995.

二级参考文献57

共引文献102

同被引文献132

  • 1侯建华,熊承义,田晓梅.广义高斯分布及其在图像去噪中的应用[J].中南民族大学学报(自然科学版),2005,24(3):44-47. 被引量:12
  • 2焦卫东,杨世锡,钱苏翔,严拱标.乘性噪声消除的同态变换盲源分离算法[J].浙江大学学报(工学版),2006,40(4):581-584. 被引量:13
  • 3张红英,彭启琮.变分图像复原中PDE的推导及其数值实现[J].计算机工程与科学,2006,28(6):44-46. 被引量:11
  • 4阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 5Rudin I., Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physica D, 1992, 60(1- 4) : 259-268.
  • 6Aubert G, Aujol J. A Variational Approach to Remove Multiplieative Noise [J]. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946.
  • 7Shi B, Huang L. A Model Based on the Fourth-Order PDE for Multiplieative Noise Removal [J]. Journal of Hunan University (Natural Science), 2011, 38(7): 83-86.
  • 8Janev M, Pilipovic S, Atanackovic T, et al. Fully Fractional Anisotropic Diffusion for Image Denoising [J].Mathematical and Computer Modeling, 2011, 54(1) : 729-741.
  • 9Tadmar E, Athavale P. Multiscale Image Representation Using Integral-Differential Equations [J]. Inverse Problems and Imaging, 2009, 3(4): 693-710.
  • 10Athavale P, Tadmar E. Integro-differential Equation Based on (BV, L1) Image Decomposition [J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 300-312.

引证文献14

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部