期刊文献+

Mg_2FeH_6纳米晶的制备及储氢性能 被引量:7

Preparation and Hydrogen Storage Properties of Mg_2FeH_6 Nanocrystals
下载PDF
导出
摘要 在室温和氩气气氛下,以MgH2和纳米Fe为原料,采用机械合金化(球磨法)制备了Mg2FeH6纳米晶.考察了球磨参数(时间、转速)对产物的影响,对所制备的Mg2FeH6纳米晶的组成、结构和形貌进行了表征,并对其储氢性能进行了测试.结果表明,所制备的Mg2FeH6纳米晶为立方结构,纯度较高(91.4%),其晶粒尺寸较小,约为10~30 nm,但团聚现象较为严重.Mg2FeH6纳米晶具有较低的活化能和较好的吸放氢动力学性能,其放氢的脱附焓和脱附熵分别为(-42.8±2)kJ/mol和(-72.0±3)J/(mol.K).在503 K和6 kPa的氢气压力下,Mg2FeH6纳米晶在70 min内放氢量达到2.5%(质量分数);在2 MPa的氢气压力下,上述放氢产物具有较快的起始吸氢速率. The preparation of Mg2FeH6 nanocrystals and their hydrogen storage properties were reported.Mg2FeH6 nanocrystals were prepared by mechanical ball-milling the mixture of MgH2 and Fe nanoparticles at room temperature under an argon atmosphere.The processing parameters(time,milling speed),crystal structure,morphologies,and hydrogen storage properties of the as-prepared Mg2FeH6 nanocrystals were investigated.The results show that the cubic Mg2FeH6 nanocrystals have a yield ratio around 91.4%,and a grain size between 10—30 nm in the powder.However,the agglomeration of particles are more serious.Mg2FeH6 nanocrystals show fast absorption/desorption kinetics.The desorption enthalpy and entropy for Mg2FeH6 are(-42.8±2) kJ/mol and(-72.0±3) J/(mol·K),respectively.At 503 K,the as-prepared Mg2FeH6 nanocrystals can release about 2.5%(mass fraction) hydrogen in 70 min under an initial hydrogen pressure of 6 kPa.Under 2 MPa hydrogen pressure,the rehydrogenation rate for the Mg2FeH6 decomposed product is fast.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第3期536-540,共5页 Chemical Journal of Chinese Universities
基金 国家"九七三"计划项目(批准号:2010CB631301) 国家"八六三"计划项目(批准号:2009AA03Z224) 国家自然科学基金(批准号:21076108) 天津科技计划(批准号:10JCYBJC08400 10SYSYJC27600) 中央高校基本科研业务费专项资助
关键词 Mg2FeH6纳米晶 机械合金化 储氢性能 Mg2FeH6 nanocrystal Mechanical ball-milling Hydrogen storage property
  • 相关文献

参考文献23

  • 1Schlapbach L.,Zuttel A..Nature[J],2001,414:353-358.
  • 2Selvam P.,Viswanathan B.,Swamy C.S.,Srinivasan V..Int.J.Hydrogen Energy[J],1986,11:169-192.
  • 3XUWei(许炜) TAOZhan-Liang(陶占良) CHENJun(陈军).化学进展,2006,:200-210.
  • 4Didisheim J.J.,Zolliker P.,Yvon K.,Fischer P.,Schefer J.,Gubelmann M.,Williams A.F..Inorg.Chem.[J],1984,23:1953-1957.
  • 5Bogdanovic'B.,Reiser A.,Schlichte K.,Spliethoff B.,Tesche B..J.Alloys Compd.[J],2002,345:77-89.
  • 6WANGYan(王艳) TAOZhan-Liang(陶占良) CHENJun(陈军).化学进展,2010,:234-240.
  • 7Peng B.,Chen J..Coord.Chem.Rev.[J],2009,253:2805-2813.
  • 8Selvam P.,Yvon K..Int.J.Hydrogen Energy[J],1991,16:615-617.
  • 9Herrich M.,Ismail N.,Handstein A.,Pratt A.,Gutfleisch O..Mater.Sci.Eng.B[J],2004,108:28-32.
  • 10Castro F.J.,Gennari F.C..J.Alloys Compd.[J],2004,375:292-296.

二级参考文献10

  • 1Lei Y.Q.,Wu Y.M.,Yang Q.M.et al..Z.Phys.Chem.[J],1994,183:379-384
  • 2Tatsuoli K..Shinji T.,Motoya K..J.Electrochem.Soc.[J],1996,143:198-199
  • 3Chen Y.,Cesar S.,Chen C.P.et al..Journal of Alloys and Compounds[J],2003,354:120-123
  • 4Gennari F.C.,Castro F.J.,Gamboa J.J.A..Journal of Alloys and Compounds[J],2002,339:261-267
  • 5Raman S.S.,Davidson D.J.,Bobet J.L.et al..Journal of Alloys and Compounds[J],2002,333:282-290
  • 6Iwakura C.,Nohara S.,Zhang S.G.et al..Journal of Alloys and Compounds[J],1999,285:246-249
  • 7Suryanarayana C..Progress in Materials Science[J],2001,46:1-184
  • 8Willems J.J.G.,Buschow K.U.G..J.Less-Common Met.[J],1987,129:13-30
  • 9Luo J.L.,Cui N..Journal of Alloys and Compounds[J],1999,288:261-267
  • 10袁华堂,宋赫男,李秋荻,冯艳,李志云,王一菁.Mg_(1-x)Ti_xNi(0≤x≤0.4)系列合金的合成及性能研究[J].高等学校化学学报,2003,24(4):584-587. 被引量:17

共引文献6

同被引文献152

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部