期刊文献+

新型的融合优化算法及其在电力系统中的应用

Novel hybrid optimization algorithm and its application in power system
下载PDF
导出
摘要 提出了一种新型的融合优化算法,该算法结合了遗传算法(GA)的复制、交叉、变异操作以及粒子群优化算法(PSO)的个体速度和位置更新的原理,并将混沌的概念引入其中,它的性能要优于GA和PSO.在标准测试函数上进行了仿真比较,验证了新型算法的有效性.最后,这种新的融合优化算法被应用到了电力系统最优潮流的计算中,对IEEE-30系统进行仿真,并与遗传算法、标准PSO算法进行比较,结果表明新型的融合优化算法具有更好的优化性能. This paper proposed a novel genetic algorithm (GA) particle swarm optimization (PSO) hybrid algorithm. The method combines the ideas of selection, crossover and mutation from GA and particle updating rules from PSO and chaotic dynamics. The effectiveness of the newly proposed algorithm is proven through simulations on benchmark tests, and, finally it is successfully applied into the optimal power flow problems. The proposed hybrid optimization method is demonstrated and compared with GA approach and standard PSO approach on the IEEE 30-bus system. The investigations reveal that the pro- posed method is more efficient in solving OPF problem.
作者 郑晓庆 高强
出处 《天津理工大学学报》 2012年第1期27-30,共4页 Journal of Tianjin University of Technology
基金 天津市高校发展基金资助(20071308)
关键词 电力系统 最优潮流 粒子群优化 遗传算法 融合优化算法 power system optimal power flow particle swarm optimization genetic algorithm hybrid optimization algorithm
  • 相关文献

参考文献9

  • 1侯云鹤,熊信艮,吴耀武,鲁丽娟.基于广义蚁群算法的电力系统经济负荷分配[J].中国电机工程学报,2003,23(3):59-64. 被引量:107
  • 2李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535
  • 3Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. USA : Piscataway, 1995.
  • 4Goldberg D E. Genetic algorithms in search, optimization and machine learning [ M ]. Addison- Wesley : Reading, Massachusetts, 1998.
  • 5Nidul S, hakrabarti R, hattopadhyay P K. Evolutionary programming techniques for economic load dispatch [ J ]. IEEE Trans on Evolutionary Computation, 2003, 7 ( 1 ) : 83-94.
  • 6Angeline P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance difference[ C ]//Proceedings of the 7th Annual Conference on Evolutionary Programming. USA :San Diego, 1998.
  • 7Eberhart R, Shi Y. Comparison between genetic algo- rithms and particle swarm optimization [ J ]. Evolutionary Programming, LNCS, 1998, 1447: 611-616.
  • 8Settles M, Soule T. Breeding Swarms: a GA/PSO Hybrid [ C ]//Proceedings of the Genetic and Evolutionary Com- putation Conference. USA:Washington D. C,2005.
  • 9Liu B, Wang L, Jin Y H. Improved particle swarm opti- mization combined with chaos[ J]. Chaos Solitons & Frac- tals, 2005, 25(5) : 1261-1271.

二级参考文献4

  • 1胡适耕(Hu Sigeng).泛函分析(Functional Analysis)[M].北京:高等教育出版社 (Beijing:Higher Education Press),2001..
  • 2张石生(Zhang Shisheng).不动点理论及应用(The fixed point theorem amp its application)[M].重庆:重庆出版社 (Chongqing:Chongqing Press),1984..
  • 3Chen L,中日青年国际学术讨论会论文集,1995年
  • 4卢侃,混沌动力学,1990年

共引文献639

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部