期刊文献+

飞机壁板定位误差双向获取与离线补偿方法 被引量:4

Bi-directional obtaining and offline compensation method of locating error for airplane panel
下载PDF
导出
摘要 自动钻铆系统已经广泛应用于飞机壁板铆接装配过程中,由于定位误差、装夹误差、托架自重变形等因素的影响,壁板的实际点位与理想点位存在差距,影响壁板连接准确度。通过分析自动钻铆流程,确定自动钻铆误差来源,提出自动钻铆定位误差双向获取方法。首先,在z向通过有限元分析,得到围框变形数据,建立围框与钻铆点位坐标映射关系;其次,在xy向通过获取上铆头与实际定位点偏差的方法,生成xy向误差数据;最后,给出了离线补偿的步骤和流程,以某型机翼壁板为实例,验证本文方法的有效性。 The application of automatic drilling/riveting(ADR) system realizes automation of the wing panel riveting assembly.However,a major obstacle to wing ADR in the past is the variation between ideal point coordinate in the model and the point position on the panel.The variation may come from the combining affect of locating error,clamping error,and self-weight deformation of bracket system.ADR process and error source are analyzed.The method of bi-directional obtaining is represented in details.Firstly,the error of z-direction is gained by establishing mapping between deformation of frame and the point on the panel,and deformation of frame is gained by finite element analysis.Secondly,the error of xy-direction comes from locating error of measuring the deviation between upper-riveting head and actual locating points.Then the offline compensation flow is shown step by step.Finally implementation on wing panel riveting is introduced,and the results demonstrate the functionality of the method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第3期631-636,共6页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)重大项目(2007AA041903)资助课题
关键词 自动钻铆 双向获取 离线补偿 有限元分析 automatic drilling/riveting(ADR) bi-directional obtaining offline compensation finite element analysis
  • 相关文献

参考文献16

  • 1自动钻铆技术在民机制造中的应用[J].成飞科技,2006,0(2):27-29. 被引量:4
  • 2Wang Y D , Zhang G X, Moon K S, et al. Compensation for the thermal error of a multi-axis machining eenter[J]. Journal of Mate- rials Processing Technology, 1998, 75(1 - 3) :45 - 53.
  • 3Wang X S, Yang J G, Wu H. Real time thermal error modeling and compensation of 5-axis NC grinding machine tool[C]//Proc. of the 14th Conference of Abrasive Technology in China, 2008 : 210 - 214.
  • 4Okafor A C, Ertekin Y M. Derivation of machine tool error mod- els and error compensation procedure for three axes vertical ma- chining center using rigid body kinematics [J]. International Journal of Machine Tools & Manufacture, 2000,40 (8) : 1199 - 1213.
  • 5Wang ShuxinYun JintianZhang ZhifeiLiu YouwuZhang QingSchool of Mechanical Engineering,Tianjin University,Tianjin 300072, China.MODELING AND COMPENSATION TECHNIQUE FOR THE GEOMETRIC ERRORS OF FIVE-AXIS CNC MACHINE TOOLS[J].Chinese Journal of Mechanical Engineering,2003,16(2):197-201. 被引量:32
  • 6穆塔里夫.阿赫迈德,项伟宏,郑力.加工中心主轴热误差实验分析与建模[J].组合机床与自动化加工技术,2002(9):15-17. 被引量:10
  • 7He Z Y, Yao X H, Fu J Z. Volumetric error prediction and com- pensation of NC machine tool based on least square support vec- tor machine[J]. Advanced Science Letters, 2011,4 (6) : 2066 - 2070.
  • 8Shen J H, Yang J G. Application of partial least squares neural network in thermal error modeling for CNC machine tool [J]. Manufacturing Automation Technology, 2009,392 : 30 - 34.
  • 9Miao E M, Yah Y, Fei Y T. Application of time series to ther- mal error compensation of machine tools[C] //Proc. of the 4th International Seminar on Modern Cutting and Measurement En- gineering, 2011: 70 - 97.
  • 10李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38

二级参考文献29

  • 1潘光斌,陈光(衤禹).基于模糊神经网络的间接测量建模方法研究[J].计量学报,2006,27(2):187-189. 被引量:4
  • 2朱坚民,王中宇,夏新涛.间接测量的神经网络解析模型及灵敏系数的计算[J].农业机械学报,2006,37(5):129-131. 被引量:1
  • 3BATENI S M, JENG D S. Estimation of pile group scour using adaptive neuro-fuzzy approach[J]. Ocean Engineering, 2007, 34(8–9): 1 344–1 354.
  • 4BATENI S M, BORGHEI S M, JENG D S. Neural network and neuro-fuzzy assessments for scour depth around bridge piers[J]. Engineering Applications of Artificial Intelligence, 2007, 20(3): 401–414.
  • 5HUANG M J, TSOUT Y L, LEE S C. Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge[J]. Knowledge-Based Systems, 2006, 19(6): 396–403.
  • 6HUANG M L, CHEN H Y, HUANG J J. Glaucoma detection using adaptive neuro-fuzzy inference system[J]. Expert Systems with Applications, 2007, 32(2): 458–468.
  • 7POLAT K, GUNES S. A hybrid medical decision making system based on principles component analysis, k-NN based weighted preprocessing and adaptive neuro-fuzzy inference system[J]. Digital Signal Processing, 2006, 16(6): 913–921.
  • 8POLAT K, GUNES S. An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease[J]. Digital Signal Processing, 2007, 17(4): 702–710.
  • 9THANGAVEL K, PETHALAKSHMI A. Dimensionality reduction based on rough set theory: A review[J]. Applied Soft Computing, 2009, 9(1): 1–12.
  • 10QUESTIER F, ROLLIER I A, WALCZAK B, et al. Application of rough set theory to feature selection for unsupervised clustering[J]. Chemometrics and Intelligent Laboratory Systems, 2002, 63(2): 155–167.

共引文献86

同被引文献33

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部