期刊文献+

基于统计几何的纹理特征提取及分类算法 被引量:1

Image feature extraction and classification based on statistical geometrical features
下载PDF
导出
摘要 纹理识别是计算机视觉领域一个重要的课题,本文研究了统计几何特征(SGF)纹理分析方法并与向量机结合构建分类系统。对支持向量机(SVM)的多分类方法的实现,构建了粗分类和细分类相结合的多分类器,实现了纹理图像的准确划分,为有效纹理特征的表示奠定了基础。本文对统计几何特征提取方法进行了研究,利用图像函数图来进行纹理描述,使用一个可变的阈值把一幅灰度纹理图像切割成一系列二进制图像,由二进制图像的连通域、几何拓扑属性推导纹理描述特征。实验结果表明,统计几何特征具有非常强的纹理描述能力,同时能够克服图像的旋转。 Texture recognition is an important topic in the field of computer vision, statistical geometrical features (SGF) is especially studied in the paper,and the texture classification system is constructed by combining these methods with support vector machines(SVM).In this paper,multiple classifier based on SVM was studied to built the raw classification system and subclass system,which can achieve highly accurate texture classification.As a new feature extraction method,SGF describes the texture with image function.The gray image is split into a series of binary images with variable thresholds.The texture description feature can be deduced by the connected domain and geometric topology property of binary images.Texture classification experiments result shows that SGF has very strong ability in texture description and rotation overcoming.
作者 张文倩
出处 《电子测试》 2012年第3期33-36,共4页 Electronic Test
关键词 特征提取 支持向量机 统计几何特征 feature selection support vector machine(SVM) statistical geometrical features(SGF)
  • 相关文献

参考文献8

  • 1章德伟,蒲晓蓉,章毅.基于Max-tree的连通区域标记新算法[J].计算机应用研究,2006,23(8):168-170. 被引量:10
  • 2刘贤喜,李邦明,苏庆堂,刘中合,王玉亮,杨峰.一种新的二值图像连通区域准确标记算法[J].计算机工程与应用,2007,43(22):76-78. 被引量:18
  • 3A.Mathur,G.M.Foody.Multiclass and Binary SVM Classification:Implications for Training and Classification Users[J].IEEE GEOSCIENCE AND REMOTESENSING LETTERS,2008,5(2).
  • 4Fabio Aio1li,Alessandro Sperduti.Multiclass Classification with Multi-Prototype Support Vector Machines[J].Journal of Machine Learning Research,2005:817-850.
  • 5Xiaojing Yuan,Zhenyu Yang,Nizar Mullani.SVMbased Texture Classification and Application to Early Melanoma Detection[J].Proceedings of the28th IEEE EMBS Annual international Conference.Aug30-Sept3,2006.
  • 6A.Mathur,GM.Foody.Multiclass and Binary SVM Classification:Implications for Training and Classification Users[J].IEEE Geoscience and Remote Sensing Lettters,2008,5(2).
  • 7刘浩一,刘明霞,孟祥增.自然纹理分类和识别方法初探[J].微电子学与计算机,2006,23(8):153-155. 被引量:8
  • 8谢菲.图像纹理特征的提取和图像分类系统研究及实现.CNKI-CDMD,2009,.

二级参考文献27

共引文献32

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部