摘要
通过检查某些特定型系数的非负性来证明给定型非负性的方法中,最典型的是Pólya方法与基于重心矩阵的逐次差分代换方法(GSDS).本文完整地比较了这两种方法的适用范围,证明了型f如果可使用Pólya方法证明非负性,则GSDS方法也可以,但反之不然.即GSDS方法的适用范围严格大于Pólya方法的适用范围.
There are two most typical methods for proving the non-negativity of a form by checking the non- negativity of some special forms' coefficients: PSlya's method and the successive difference substitution method based on the barycentric matrix (GSDS). In this paper, we proved that if a form f can be proven to be non- negative by P61ya's method, then it can also be proven to be non-negative by GSDS, but the reverse is not true. In other words, GSDS can be applied to strictly wider scope than P61ya's method.
出处
《中国科学:数学》
CSCD
北大核心
2012年第3期203-213,共11页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11001228,10901116和91018012)
国家“973”计划(批准号:2011CB302400)资助项目
关键词
逐次差分代换方法
重心矩阵
Pólya定理
非负型
the successive difference substitution method, barycentric matrix, P61ya's theorem, non-negativeform