期刊文献+

Pólya方法与逐次差分代换方法 被引量:3

Pólya’s method and the successive difference substitution method
原文传递
导出
摘要 通过检查某些特定型系数的非负性来证明给定型非负性的方法中,最典型的是Pólya方法与基于重心矩阵的逐次差分代换方法(GSDS).本文完整地比较了这两种方法的适用范围,证明了型f如果可使用Pólya方法证明非负性,则GSDS方法也可以,但反之不然.即GSDS方法的适用范围严格大于Pólya方法的适用范围. There are two most typical methods for proving the non-negativity of a form by checking the non- negativity of some special forms' coefficients: PSlya's method and the successive difference substitution method based on the barycentric matrix (GSDS). In this paper, we proved that if a form f can be proven to be non- negative by P61ya's method, then it can also be proven to be non-negative by GSDS, but the reverse is not true. In other words, GSDS can be applied to strictly wider scope than P61ya's method.
作者 徐嘉 姚勇
出处 《中国科学:数学》 CSCD 北大核心 2012年第3期203-213,共11页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11001228,10901116和91018012) 国家“973”计划(批准号:2011CB302400)资助项目
关键词 逐次差分代换方法 重心矩阵 Pólya定理 非负型 the successive difference substitution method, barycentric matrix, P61ya's theorem, non-negativeform
  • 相关文献

参考文献31

  • 1Hilbert D.U¨ber die Darstellung deniter Funktionen durch Quadrate-ber die darstellung deniter formen als summe von formenquadraten.Math Ann,1888,32:342-350.
  • 2Bernstein S.Sur la repr′esentation des polynomes positif.Soobshch Har’k Mat Obshch,1915,2:227-228.
  • 3Motzkin T S.Copositive quadratic forms.Natl Bur Stand Rep,1952,1818:11-22.
  • 4Motzkin T S,Strauss E G.Divisors of polynomials and power series with positive coeffcients.Pacific J Math,1969,29:641-652.
  • 5Scheiderer C.Positivity and Sums of Squares:A Guide to Recent Results,Emerging Applications of Algebraic Geom-etry.New York -Berlin-Heidelberg:Springer-Verlag,2009,271-324.
  • 6Berg C,Maserick P H.Polynomially positive definite sequences.Math Ann,1982,259:487-495.
  • 7Putinar M.Positive polynomials on compact semi-algebraic sets.Indiana Univ Math J,1993,42:969-984.
  • 8Schweighofer M.Certificates for nonnegativity of polynomials with zeros on compact semi-algebraic sets.Manuscripta Math,2005,117:407-428.
  • 9Collins G E.Quantifier elimination for real closedfields by cylindric algebraic decomposition.In:Second GI Conference on Automata Theory and Formal Languages,Lecture Notes in Computer Science,vol.33.Berlin:Springer-Verlag,1975,134-183.
  • 10Collins G E,Hong H.Partial cylindrical algebraic decomposition for quantifier elimination.J Symbolic Comput,1991,12:299-328.

二级参考文献43

  • 1杨路,侯晓荣,夏壁灿.A complete algorithm for automated discovering of a class of inequality-type theorems[J].Science in China(Series F),2001,44(1):33-49. 被引量:24
  • 2杨路.差分代换与不等式机器证明[J].广州大学学报(自然科学版),2006,5(2):1-7. 被引量:36
  • 3Yang Lu. Solving harder problems with lesser mathematics. Proceedings of the 10th Asian Technology Conference in Mathematics, Advanced Technology Council Mathematics Inc., Blacksburg, 2005.
  • 4Yong Yao. Termination of the sequence of sds sets and machine decision for positive semi-definite forms, http://arxiv.org/abs/0904.4030v1.
  • 5Polya G, Szego G. Problems and Theorems in Analysis. Berlin, Springer-Verlag, 1972.
  • 6Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge Univercity Press, Cambridge, 1952.
  • 7Catlin D W, D'Angelo J P. Positivity conditions for bihomogeneous polynomials. Math. Res. Lett., 1997, 4: 555-567.
  • 8Handelman D. Deciding eventual positivity of polynomials. Ergod. Th. and Dynam. Sys., 1986, 6: 57-79.
  • 9Habicht W. Uber die zerlegung strikte definter formen in qu~drate. Coment. Math. Helv., 1940, 12: 317-322.
  • 10Schweighofer M. An algorithmic approach to Schmudgen's positivstellensotz. J. Pure and Appl. Alg., 2002, 166: 307-319.

共引文献55

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部