期刊文献+

PSO的向量整体修订策略和局部跳出策略 被引量:1

Vector correction and jump out of local optimum strategy for PSO
下载PDF
导出
摘要 针对传统PSO方法对CEC2005(The 2005 IEEE Congress on evolutionary computation)中的25个benchmark函数搜索效果较差的问题,提出了'向量整体修订'和'局部跳出'两种改进策略。改变PSO方法中粒子在每一维上的修订相互独立的传统机制,按某一概率将粒子作为整体进行修正,当群体最优长时间不变或变化值小于一定阈值时,为跳出局部最优,按某一概率重新定义群体最优或初始化群体。通过实验证明了改进后的PSO方法对CEC2005中的测试问题的有效性。 Using traditional Particle Swarm Optimization (PSO) the searching results for some new benchmark functions, e. g. the 25 benchmark functions in CEC2005, are not satisfactory. An improved version of PSO was designed to suit for new benchmark functions in CEC2005. Two improvement strategies, named Vector correction strategy and Jump out of local optimum strategy, were employed in this improved PSO. When the swarm optimum remains invariable for a long time, The improve PSO can revises the whole particle vector and re-initialize the swarm or generate a new swarm optimum according to certain probability. The improved PSO was tested by the 25 benchmark functions in CEC2005, and the experimental results show that the search efficiency and the ability to jump out of the local optimum of the improved PSO are significantly improved.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第2期429-433,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61173173 60970105 60970088 61035003 60933004 60172085) '973'国家发展规划项目(2007CB311004) 山东省中青年科学家奖励基金(2009BSD01383)
关键词 计算机应用 粒子群优化 收敛 向量修订 局部跳出 computer application partical swarm optimization convergence vector correction jumpout of local optimum
  • 相关文献

参考文献9

  • 1Eberhart R,Kennedy J.A new optimizer using par-ticle swarm theory[C] ∥Proceedings of the Sixth In-ternational Symposium on Micro Machine and Hu-man Science,Nagoya,Japan,1995.
  • 2Kennedy J,Eberhart R C.Particle swarm optimiza-tion[C] ∥Proc IEEE International Conference onNeural Networks.IEEE Service Center,Piscat-away,1995.
  • 3Shi Y,Eberhart R.Monitoring of particle swarmoptimization[J].Frontiers of Computer Science inChina,2009,3(1):31-37.
  • 4崔光照,李小广,张勋才,王延峰,李翠玲.基于改进的粒子群遗传算法的DNA编码序列优化[J].计算机学报,2010,33(2):311-316. 被引量:28
  • 5纪震,周家锐,廖惠连,吴青华.智能单粒子优化算法[J].计算机学报,2010,33(3):556-561. 被引量:61
  • 6潘冠宇,刘大有,窦全胜,刘晓华.PSO方法的收敛性及基于微分演化的参数确定策略[J].吉林大学学报(工学版),2007,37(4):842-845. 被引量:1
  • 7Poli R.Mean and variance of the sampling distribu-tion of particle swarm optimizers during stagnation[J].IEEE Transactions on Evolutionary Computa-tion,2009,13(4):712-721.
  • 8Suganthan P N,Hansen N,Liang J J,et al.Problemdefinitions and evaluation criteria for the CEC 2005spe-cial session on real-parameter optimization[DB/OL].[2006-12-20].http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/CEC2005/Tech-Report-May-30-05.pdf.
  • 9Hansen N.Compilation of results on the 2005CECbenchmark function set[DB/OL].[2006-12-20].http://www3.ntu.edu.sg/home/epnsugan/index_files/CEC-05/compareresults.pdf.

二级参考文献25

  • 1Cui Guangzhao,Niu Yunyun,Wang Yanfeng,Zhang Xuncai,Pan Linqiang.A new approach based on PSO algorithm to find good computational encoding sequences[J].Progress in Natural Science:Materials International,2007,17(6):712-716. 被引量:11
  • 2Kennedy J, Eberhart R C. Particle swarm optimization// Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 3Shi Y, Eberhart R C. A modified particle swarm optimizer// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 4Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization//Proceedings of the IEEE Congress on Evolutionary Computation. Seoul, Korea, 2001: 1011-106.
  • 5Clerc M. The swarm and the queen: Toward a deterministic and adaptive particle swarm optimization//Proceedings of the Congress on Evolutionary Computation, 1999: 1951-1957.
  • 6Corne D, Dorigo M, Glover F. New Ideas in Optimization. McGraw Hill, 1999:379-387.
  • 7Angeline P J. Using selection to improve particle swarm optimization//Proceedings of the IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, USA, 1998:84-89.
  • 8Angeline P J. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences//Proceedings of the 7th Annual Conference on Evolutionary Programming. Germany, 1998:601-610.
  • 9Suganthan P N. Particle swarm optimizer with neighborhood topology on particle swarm performance//Proeeedings of the 1999 Congress on Evolutionary Computation, 1999: 1958- 1962.
  • 10Kennedy J. Small worlds and Mega-minds: Effects of neighborhood topology on particle swarm performance//Proceedings of the Congress on Evolutionary Computation, 1999 1931-1938.

共引文献87

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部