期刊文献+

线性系统理论在分析分形-小波变换编码误差中的应用

The Analysis of Image Coding Error of Fractal-Wavelet Transformation by Using Linear System Theory
下载PDF
导出
摘要 本文利用线性系统理论对Davis所采用的自子树量化(SQS)分形小波变换图像编码算法进行了深入分析,并发现SQS变换的吸引子与动力系统的稳定状态具有一致性.因此编码过程实际上就是对动力系统的参数进行编码.通过这种分析使我们了解到了尺度函数系数的量化误差是怎样影响解码图像的,从而可以更有效地控制解码误差,并且由此还可以更深刻地认识SQS算法中直接存储尺度函数系数方案给编、解码带来的巨大好处. In this paper,we analysed the Self-Quantization of Subtrees (SQS)in Fractal-Wavelet transform for image coding al- gorithm of Davis by using the linear System theory.we found that there is an equivalence of the attractor of a SQS transformation and the steady-state of a dynamical system . So, the encoding Process is done by encoding the parameters of this dynamical system According to this we can know how quantization errors for the scaling function coefficients will affect the decoded image,then we have coned over the final decoded error. Also,if we store the scaling function coefficients directly,we will get a result in a marked improvement in quality with respect to quantization for image compression.
作者 马波 裘正定
出处 《电子学报》 EI CAS CSCD 北大核心 2000年第1期53-56,63,共5页 Acta Electronica Sinica
基金 国家863通信主题支持课题
关键词 分形 小波变换 线性系统 编码 图像处理 wavelet transform Self-quantization of subtrees linear system decoded error
  • 相关文献

参考文献1

  • 1Xiong Z,IEEE Trans Image Processing,1997年,6卷,677页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部