期刊文献+

基于局部线性度量的模糊建模 被引量:2

Fuzzy Model ldentification Based on Local Linearity Measure
下载PDF
导出
摘要 提出了一种高木-关野模糊逻辑系统的学习算法,该算法的核心是基于数据样本局部线性度量的聚类,它可以有效地确定规则数以及相应模糊逻辑系统的参数初值.通过对系统的参数进行优化,可以很好的描述输入输出变量间的关系.仿真实验说明了该方法的优越性. A new Takagi-Sugeno type hay system modeling method is Proposed in this paper, which is based on local linearity measure of training data. The number of rules and their initial parameter values can be determined through this method. The relation between input/output variables can be approached much more accurately though parameter optimization. Finally a numerical example is used to illustrate the efficiency of this method.
出处 《电子学报》 EI CAS CSCD 北大核心 2000年第1期64-66,共3页 Acta Electronica Sinica
关键词 模糊逻辑 模糊建模 聚类 局部线性度量 学习算法 fuzzy logic fuzzy modeling rule extract clustering
  • 相关文献

参考文献5

  • 1[1]Dunn J.A fuzzy relative of the ISODATA process and its use in detecting compact,well separated cluster.Journal of Cybernetics,1974,3(3):32~57
  • 2[2]Bezedek J.Etc.,Convergence theory for fuzzy c-means:Counterexamples and repairs,The Analysis of Fuzzy Information.CRC Press,1987,3,Chap.8
  • 3[3]Ronald R.Yager,Dimitar P.Filev.Journal of Intelligent and fuzzy System,1994,2:209~219
  • 4[4]Stephen L.Chiu.Journal of Intelligent and fuzzy Systems,1994,2:267~278
  • 5[5]Takagi T,Sugeno M.IEEE,Trans.On Systems,Man and Cybernetics,1985,22(6)

同被引文献19

  • 1薛振框,李少远.MIMO非线性系统的多模型建模方法[J].电子学报,2005,33(1):52-56. 被引量:18
  • 2Weisheng Chen, Zhengqiang Zhang. Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign[ J]. Fuzzy Sets and Sys- tems, 2010,161 (6) : 821 - 836.
  • 3Nastaran Vasegh, Vahid Johari Majd.Fuzzy model-based adap- tive synchronization of time-delayed chaotic systems [ J ]. Chaos, Solitons and Fractals, 2009,40(3) : 1484 - 1492.
  • 4Chang-Hua Lien, Ker-Wei Yu. Robust control for Takagi- Sugeno fuzzy systems with time-varying state and input delays [ J]. Chaos, Solitons, and Fractals,2008,35(5) : 1003 - 1008.
  • 5Chang-Chun Hua, Qing-Guo Wang, and Xin-Ping Guan. Adap- tive fuzzy output-feedback controller design for nonlinear time- delay systems with unknown control direction[J]. IEEE Trans- actions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2009,39(2) :363 - 374.
  • 6T P Zhang, S S Ge. Adaptive neural conlrol of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs[ J]. Automatica, 2007,43(6) : 1021 - 1033.
  • 7Bing Chen, Xiaoping Liu, Kefu Liu, Peng Shi, Chong Lin. Di- rect adaptive fuzzy control for nonlinear systems with time- varying delays[ J] . Information Sciences, 2010,180 (5): 776 - 792.
  • 8Wen-Shyong Yu. Tracking-based adaptive fuzzy-neural control for MIMO uncertain robotic systems with time delays [ J ]. Fuzzy Sets and Systems, 2004,146 ( 3 ) : 375 - 401.
  • 9孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),1997,37(3):76-80. 被引量:85
  • 10Bezdek J C,Hathaway R J,Sabin M J,et al.Convergence theory for fuzzy C-means:counterexamples and repairers[J].IEEE Transactions on Systems,Man and Cybernetics,1987,SMC-17(4):873~877.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部