期刊文献+

等值分数概念的理解 被引量:4

Conceptual Understanding of Equivalent Fractions
下载PDF
导出
摘要 等值分数是表示具有相等值的分数,它建立在两个量具有确定比例关系的基础上。研究表明,儿童在接受正式教学之前,就具有了等值分数的非正式知识,但仍然在概念理解上存在很大的困难,主要有两方面的原因:一是受自身运算思维发展水平的制约,未获得乘法思维和守恒观念;二是缺乏对等值分数不同语义的理解。在今后研究中,需进一步探讨从非正式知识到正式概念之间的发展路径,尝试开展等值分数的早期教学实验,并需要结合多种语义背景来考查儿童的概念发展水平。 Equivalent fractions are fractions with the same numerical value, which is constructed on the basis of a certain proportional relationship between two quantities. Previous literature has shown that before receiving formal education, children have had informal knowledge for equivalent fractions. However, they still have trouble in understanding the concept. For this phenomenon, two reasons have been proposed: first, children are limited by the developmental level of operational thinking, because children have not reached multiplicative thinking and conservation concept; second, they lack complete understanding for the different semantic meanings of equivalent fractions. In the future, it is necessary to further explore the developmental path from informal knowledge to the formal concept, and try to conduct teaching experiments of equivalent fractions in children’s early ages, and combine a variety of semantic contexts to examine children’s concept development level.
出处 《心理发展与教育》 CSSCI 北大核心 2012年第2期210-217,共8页 Psychological Development and Education
基金 国家自然科学基金项目(30970909)
关键词 等值分数 乘法思维 守恒 语义 equivalent fraction multiplicative thinking conservation semantic meaning
  • 相关文献

参考文献50

  • 1Barth,H.,Baron,A.,Spelke,E.,&Carey,S.(2009).Children’smultiplicative transformations of discrete and continuous quantities.Journal of Experimental Child Psychology,103,441-454.
  • 2Behr,M.,Lesh,R.,Post,T.,&Silver,E.(1983).Rationalnumber concepts.In R.Lesh&M.Landau(Eds.),Acquisition ofmathematics concepts and processes(pp.91-125).New York:Academic Press.
  • 3Behr,M.J.,Wachsmuth,I.,Post,T.,&Lesh,R.(1984).Orderand equivalence of rational numbers:A clinical teaching experiment.Journal for Research in Mathematics Education,15(5),323-341.
  • 4Behr,M.,Harel,G.,Post,T.,&Lesh,R.(1992).Rationalnumber,ratio and proportion.In D.Grouws(Ed.),Handbook ofresearch on mathematics teaching and learning(pp.296-333).NewYork:Macmillan Publishing.
  • 5Biehler,R.(2005).Reconstruction of meaning as a didactical task:The concept of function as an example.Meaning in mathematicseducation,37,61-81.
  • 6Boyer,T.W.,Levine,S.C.,&Huttenlocher,J.(2008).Development of proportional reasoning:Where young children gowrong.Developmental Psychology,44(5),1478-1490.
  • 7Brannon,Elizabeth,M.(2002).The development of ordinal numericalknowledge in infancy.Cognition,83(3),223-240.
  • 8Brousseau,G.,Brousseau,N.,&Warfield,V.(2004).Rationalsand decimals as required in the school curriculum.Journal ofMathematical Behavior,23,1-20.
  • 9Cathcart,W.,Pothier,Y.,Vance,J.,&Bezuk,N.(2006).Learning mathematics in elementary and middle schools:A learner-centered approach(4th ed.).Upper Saddle River,NJ:PearsonPrentice Hall.
  • 10Chapin,S.H.,&Johnson,A.(2006).Math matters:Understandingthe math you teach,Grades K-8(2nd ed.).Sausalito,CA:MathSolutions.

二级参考文献27

共引文献30

同被引文献90

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部