期刊文献+

基于频繁项目集链式存储方法的关联规则算法 被引量:4

Association rule algorithm based on chain storage method of frequent itemsets
下载PDF
导出
摘要 为了提高经典关联规则Apriori算法的挖掘效率,针对Apriori算法的瓶颈问题,提出了一种链式结构存储频繁项目集并生成最大频繁项目集的关联规则算法。该算法采用比特向量方式存储事务,生成频繁项目集的同时,把包含此频繁项目的事务作为链表连接到频繁项目之后,生成最大频繁项目集。该算法能够减小扫描事物数据库的次数和生成候选项目集的数量,从而减少了生成最大频繁项目集的时间,实验结果表明,该算法提高了运算效率。 In order to improve the Apriori algorithm mining efficiency, a mining algorithm is presented to use a chain structure to store frequent itemsets and generate maximum frequent itemsets for the bottleneck problem of the classic Apriori algorithm. In this algorithm, the transaction is stored with a bit vector, when frequent itemset is generated, the transaction including this frequent itemset as a linked list connect to frequent itemset, at end, it make maximum frequent itemsets. This algorithm reduce the number of scanning transaction database and the amount of generating candidate itemsets, thus reduce time of generated maximum frequent itemsets, experimental results show that this algorithm improve the operation efficiency.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第3期1002-1007,共6页 Computer Engineering and Design
关键词 数据挖掘 APRIORI算法 候选集 频繁项目集 关联规则 data mining Apriori algorithm candidate itemsets frequent itemsets association rule
  • 相关文献

参考文献12

二级参考文献84

共引文献45

同被引文献29

  • 1吴明强,史慧,朱晓华,肖开清.故障诊断专家系统研究的现状与展望[J].计算机测量与控制,2005,13(12):1301-1304. 被引量:68
  • 2Jiawei Han,Micheline Kamber(著),范明,孟小峰(译).数据挖掘概念与技术[M].北京:机械工业出版社,2007.3.2.
  • 3Tim Smith,Alberto Diez Oliván,Nagore Barrena. Remote maintenance support in the railway industry[A].2011.40-46.
  • 4陈燕.数据仓库与数据挖掘[M]{H}大连:大连海事大学出版社,2006120-121.
  • 5J Han,J Pei,B Mortazavi-Asl. Freespan:Frequent pattern-projected sequential pattern mining[A].2000.355-359.
  • 6H Mannila,H Toivonen,A Verkamo. Efficient algorithm for discovering association rules[A].1994.181-192.
  • 7Gail Dutton, Big data goes to school [DB/OL]. [2014-03-06]. http: //www. forbes, eom/sites/emc/2014/03/06/big-data-goes- to-school/2/.
  • 8Liu Xiaobing, Zhai Kun, Witold Pedrycz. An improved asso- ciation rules mining method [J]. Expert Systems with Applica- tions, 2012, 39 (1): 1362-1374.
  • 9Bay Vo, Tzung-Pei Hong, Bac Le. DBV-Miner.. A dynamic bit vector approach for fast mining frequent closed itemsets [J]. Expert Systems with Applications, 2012, 39 (8) 7196-7206.
  • 10方炜炜,杨炳儒,宋威,侯伟.基于布尔矩阵的关联规则算法研究[J].计算机应用研究,2008,25(7):1964-1966. 被引量:18

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部