期刊文献+

基于高斯模型的污损纸币识别算法研究 被引量:1

Researchon Dirty Banknotes Identification Algorithms Based on Gaussian Model
下载PDF
导出
摘要 研究纸币识别问题,提高纸币识别的准确率。针对纸币识别过程中,当待识别的纸币在流通中存在被污染或者磨损,传统的模板匹配的识别算法受纸币污损的影响识别的准确性。为解决上述问题提出一种高斯模型的识别算法,首先对待检测图像进行亮度补偿、边缘检测、倾斜校正等预处理,然后将图像划分为若干个矩形子区域,计算各子区域的灰度平均值作为提取的图像初始特征,通过计算初始特征的先验概率并对后验概率进行修正,对污损区域特征值的校正,最后建立高斯模型完成纸币的识别,克服了传统无法准确识别污损纸币的问题。实验证明,改进方法能够将纸币污损部分校正并将纸币准确识别,取得了满意的效果。 Research notes identification algorithms for improving the accuracy of banknotes recognition.In the process of notes recognition,when the banknotes to be identified were polluted or abrasion in circulation,the traditional matching identification algorithms based on template can not work accurately because of the influence of banknotes fouling.This paper proposed a recognition algorithm based on gaussian model.First,the pretreatments such as detection image edge detection,tilt correction and brightness compensation were carred out.Then,the image was divided into a number of rectangular promoter regions.Each branch area was calculated as the extracted image gray-scale average initial characteristic,and the posterior probability was amended through the initial feature prior probability calculation,so that realize the regional characteristic value of correction fouling.Finally,gaussian model was establish for the identification of complete notes,which overcome the problem that traditional methods cannot accurately identify dirty banknotes.Experiments show that the method can accurately identify fouling and achieve satisfactory results.
作者 崔德友
机构地区 广播电视大学
出处 《计算机仿真》 CSCD 北大核心 2012年第3期303-306,共4页 Computer Simulation
关键词 纸币识别 模板匹配 高斯模型 Banknotes recognition Template matching Gaussian model
  • 相关文献

参考文献5

二级参考文献11

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2王毅.[D].北京:北京理工大学,2001: 2-5.
  • 3崔岩梅.[D].北京:北京理工大学,1999: 8-9.
  • 4何斌 马天予 王运坚编写.Visual c++图像处理[M].人民邮电出版社,2002..
  • 5[日]田村秀行等著.计算机图像处理技术[M].北京师范大学出版社,1988..
  • 6CLARK G A, SENGUPTA S K, AIMONETTI W D, et al. Multispectral Image Fusion for Detecting Land Mines[J]. SPIE,1995, 2496: 850-864.
  • 7XILINX. FastFLASH^TM XC9500XL High-Performance CPLD Family[EB/OL]. http://www.xilinx.com, 1999/2003-12-01.
  • 8Data Sheet of SAA7111A Enhanced Video Input Processor.Philips Semiconductors, 1998
  • 9The I2C Bus Specification(Version 2.1 ). Philips Semiconductors, 2000
  • 10杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..

共引文献25

同被引文献10

  • 1冈萨雷斯.数字图像处理[M].第二版,北京:电子工业出版社,2003:460-521.
  • 2Junfang Guo,Yanyun Zhao,Anni Cai.A Reliable Method For Paper Currency Recognition Based On LBP[C]//Proceedings of IC-NIDC2010,2010,10:359-363.
  • 3Chin-Chen Chang,Tai-Xing Yu,Hsuan-Yen Yen.Paper Currency Verification With Support Vector Machines.Third International EEE Conference on Signal-Image Technologies and Internet-Based System,2007,146:860-865.
  • 4Fumiaki Takeda,Sigeru Omatu.High Speed Paper Currency Recognition by Neural Networks[J].IEEE TRANSACTIONS ON NEURAL NETWORKS,1995,6(1):73-77.
  • 5A.Frosini,M.Gori,P.Priami.A Neural Network-Based Model for Paper Currency Recognition and Verification[J].IEEE Trans Neural Networks,1996,7(6):1482-1490.
  • 6F.Takeda,T.Nishikage.Multiple Kinds of Paper Currency Recognition using Neural Network and Application for Euro Currency[C]//Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks,2000,2 (2):143-147.
  • 7曹守见,方应谦,朱光.模糊网格中多种贡献度的单字识别技术[C]//全国汉字识别学术会议,1999.
  • 8何周灿,王庆,杨恒.图像特征匹配中一种快速关键维过滤搜索算法[J].西安电子科技大学学报,2010,37(3):534-540. 被引量:4
  • 9郭荣艳,胡雪惠.BP神经网络在车牌字符识别中的应用研究[J].计算机仿真,2010,27(9):299-301. 被引量:37
  • 10曹丹华,刘斌昺,吴裕斌.投影特征匹配的快速钞币面值识别算法[J].光电工程,2004,31(1):59-61. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部