期刊文献+

基于叶片形态特征的葡萄品种自动识别 被引量:6

Automatic Identification of Grape Varieties Based on Leaf Morphological Characteristics
下载PDF
导出
摘要 葡萄在全世界种植范围较广,葡萄品种识别对葡萄资源统计、新品种鉴定及遗传资源保护都有重要意义。以成熟叶片为基本材料,不变矩、面积、周长、主叶脉长度和叶柄长度等11维特征向量为基础数据,采用叶片特征选择、图像处理、特征值提取、建立分类模型等方法,运用国际葡萄与葡萄酒组织形态分类方法和改进的欧式距离等技术开发一个基于葡萄叶片数字图像的葡萄品种自动识别软件。共测试17种酿酒和3种野生葡萄,识别率达87%。该方法具有自动化、识别速度快、花费低、省时省力等特点,可应用于葡萄病虫害的识别、杂交新品种双亲的判定等。 Grapes have been widely cultivated in the world.Identification of grape varieties is meaningful for grape resources statistics,the identification of new varieties and protection of grape genetic resources.In this paper,we presented our grape classifier based on 11-dimension feature vectors including Hu's moment invariants,perimeter,area,the length of the main vein and petiole of grape mature leafs,through the following steps: determination of leaf features,image processing,calculating feature vectors from leaf images,and establishing classification model.Our aim was to develop an automatic identification software based on grape leaf's digital image,combining OIV morphological taxonomy with Euclidean distance enhanced by probability.Our software achieves a correct recognition rate higher than 87% for seventeen kinds of vine grapes and three kinds of wild grapes.The recognition was entirely performed by the software.It is automatic,fast and cheap without any specific device.This technique can be applied in identification of grape diseases and insect pests as well as the parent determination of new hybrid grapes varieties.
出处 《计算机仿真》 CSCD 北大核心 2012年第3期307-310,共4页 Computer Simulation
关键词 葡萄品种 自动识别 叶片图像处理 形态学 欧氏距离 Grape varieties Automatic recognition Leaf images processing Morphology Euclidean distance
  • 相关文献

参考文献10

二级参考文献17

  • 1邵宏波.高等植物性别分化研究的某些进展[J].武汉植物学研究,1994,12(1):85-94. 被引量:16
  • 2张立平,林伯年,沈德绪,董继新.葡萄属植物染色体DNA的提取、纯化及RFLP鉴定[J].果树科学,1996,13(2):71-74. 被引量:23
  • 3Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis and Machine Vision[M],Second Edition,Beijing:Posts & Telecom Press, 2002.
  • 4T W Ridler,S Calvard.Picture Thresholding Using An herative Selection Method[J].IEEE Transaction on System,Man and Cybernetics, 1978;8(8) :630-632.
  • 5H Freeman.On the encoding of arbitrary geometric configuratinns[J]. IRE Trans on Electronic Computers,1961;EC-10:260-268.
  • 6M K Hu.Visual Pattern Recognition by Moment Invariants[J].IRE Transaction Information Theory, 1962; 8 (2) : 179- 187.
  • 7Chaur-Chin Chen.Improved Moment Invariants for Shape Discfimi, nation[J].Pattem Recognition, 1993 ;26(5 ) :683-686.
  • 8D S Huang.The local minima free condition of feedforward neural networks for outer-supervised learning[J].IEEE Transaction on Systems, Man and Cybernetics, 1993 ; 28B (3) :477-480.
  • 9沈德绪,果树育种学,1986年
  • 10晁无疾,果树科学,1984年,1期,1页

共引文献171

同被引文献94

  • 1吕秀兰,张光伦,龚荣高,汪志辉,曾秀丽,苟琳.22个葡萄品种过氧化物同工酶研究[J].四川农业大学学报,2005,23(2):182-185. 被引量:13
  • 2熊凌.计算机视觉中的图像匹配综述[J].湖北工业大学学报,2006,21(3):171-173. 被引量:22
  • 3谭佐军,王贤峰,卢军.基于差分投影法实现仓储害虫图像的精确定位[J].农机化研究,2007,29(1):91-93. 被引量:6
  • 4戴之祥,邵陆寿,丁克坚,韦韫,葛婧.基于可见光图像的水稻植株含水率检测技术[J].农业机械学报,2007,38(3):200-201. 被引量:6
  • 5Bebis G, Egbert D, Shah M. Review of computer vision education [J]. IEEE Transactions on Education. 2003, 46(1).
  • 6Chen Y, Chao K, Kim M S. Machine vision technology for agricul- tural [J]. Computers and Electronics in Agriculture. 2002, 36: 173- 191.
  • 7Zobel R W. Sensitivity Analysis of Computer-Based Diameter Mea- surement from Digital Images [J]. Crop Sci. 2003, 43: 583-591.
  • 8Igathinathane C, Pordesimo L O, Columbus E P, et al. Shape identi- fication and particles size distribution from basic shape parameters using Image [J].Computers and Electronics in Agriculture. 2008, 63: 168-182.
  • 9Igathinathane C, Pordesimo L O, Columbusa E P, et al. Sieveless particle size distribution analysis of particulate materials through computer vision [J]. Computers and Electronics in Agriculture. 2009, 66: 147-158.
  • 10Guevara-Hemandez F, Gomez-Gil J. A machine vision system for classification of wheat and barley grain kernels [J]. Spanish Journal of Agricultural Research. 2011, 9(3): 672-680.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部