期刊文献+

一类非线性反应-扩散方程丰富的显式精确解 被引量:7

Abundant explicit and exact solutions for a class of nonlinear reaction-diffusion equations
下载PDF
导出
摘要 借助于作者最近开发的求解非线性偏微分方程精确解的符号计算软件包——PDE Solver,获得了一类非线性反应-扩散方程丰富的显式精确解.WAZWAZ获得的所有解为本文一些解的特例.另外还获得了许多其他新的显式精确解.结果表明,扩展双曲函数方法是WAZWAZ所提扩展双曲正切方法的改进和推广.扩展双曲函数方法提供了精确求解非线性偏微分方程的有效方法。 With the aid of a computer symbolic software package "PDESolver", developed by the authors re- cently to solve nonlinear partial differential equations exactly, abundant new exact and explicit solutions of a class of nonlinear reaction-diffusion equation are obtained. All solutions obtained by WAZWAZ are obtained a- gain as special case of some solutions in this paper. Many new explicit and exact solutions are also presented. The results indicated that the extended hyperbolic function method is an extension and improvement to the ex- tended tanh method presented by WAZWAZ. The extended hyperbolic function method provides an effective way to solve nonlinear partial differential equations exactly.
作者 黄勇 尚亚东
出处 《广州大学学报(自然科学版)》 CAS 2012年第1期1-9,共9页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金项目(10771041 40890150 40890153 60971093) 广东省科技计划项目(2008B080701042) 广州市科普项目(2010KP035)资助
关键词 非线性偏微分方程 扩展双曲函数法 反应-扩散方程 精确解 符号计算 nonlinear partial differential equation the extended hyperbolic function method reaction-diffusionequation exact solutions symbolic computation
  • 相关文献

参考文献22

  • 1ABLOWITZ M J,CLARKSON P A.Solitons,nonlinear evolution equations and inverse scattering[M].Cambridge:Cam-bridge University Press,1991.
  • 2GU Chao-hao,HU He-sheng,ZHOU Zi-xiang.Darboux transformation in integrable systems:Theory and their applicationsto geometry[M].New York:Springer Press,2005.
  • 3ROGERS C,SCHIEF W K.Bcklundand Darboux transformations[M].Cambridge:Cambridge University Press,2002.
  • 4HIROTA R.Direct method in soliton theory[M].Tokyo:Iwannmi Shoten Publishers,1992.
  • 5BLUMAN G W,ANCO S C.Symmetry and integration methods for differential equations[M].New York:Springer Press,2002.
  • 6PARKES E J,DUFFY B R.An automated tanh-function method for finding solitary wave solutions to nonlinear evolution e-quations[J].Comput Phys Commun,1996,98(3):288-300.
  • 7WAZWAZ A M.The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations[J].App Math andComput,2007,188(2):1467-1475.
  • 8YUSUFOGLU E,BEKIR A.Solitons and periodic solutions of coupled non linear evolution equations by using sine-cosinemethod[J].Int J Comput Math,2006,83(12):915-924.
  • 9WANG Ming-liang.Solitary wave solutions for variant Boussinesq equations[J].Phy Letters A,1995,199(3/4):169-172.
  • 10DAI Chao-qing,ZHANG Jie-fang.Jacobian elliptic function method for nonlinear differential-difference equations[J].Cha-os,Solitons,and Fractals,2006,27(4):1042-1049.

二级参考文献12

  • 1M.L. Wang, Phys. Lett. A 199 (1995) 169.
  • 2Z.Y. Yan and H.Q. Zhang, Phys. Lett. A 252 (1999) 291.
  • 3E.G. Fan and Y.C. Hon, Chaos, Solitons & Fractals 15(2003) 559.
  • 4S.K. Liu, Z.T. Fu, S.D. Liu, et al., Phys. Lett. A 289(2001) 69.
  • 5Z.T. Fu, S.K. Liu, S.D. Liu, et al., Phys. Lett. A 290(2001) 72.
  • 6E.J. Parkes, B.R. Duffy, and P.C. AbbotL Phys. Lett. A295 (2002) 280.
  • 7Z.Y. Yan, Chaos, Solitons & Fractals 18 (2003) 299.
  • 8Z.Y. Yan, Comput. Phys. Commun. 153 (2003) 145.
  • 9Y.B. Zhou, M.L. Wang, and Y.M. Wang, Phys. Lett. A308 (2003) 31.
  • 10M.L. Wang and Y.B. Zhou, Phys. Lett. A 318 (2003) 84.

共引文献2

同被引文献34

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部