期刊文献+

一种加权的ML—kNN算法

A Novel Weighted Multi-label kNN Algorithm
下载PDF
导出
摘要 ML—kNN算法利用贝叶斯概率修改传统的kNN算法以解决多标签问题,但这种基于概率统计的方法对覆盖率低的标签容易造成误判。因此,该文提出了一种加权ML—kNN算法,将样本与邻居之间的距离转化为权值来改这种误判。在三个基准数据集上进行对比实验,利用七个标准对其进行评测。实验结果表明,该加权ML—kNN算法整体上优于ML—kNN算法。 ML-kNN modifies kNN by combining Bayesian probability to solve multi-label problem. However, based on probability statistics, ML-kNN doesn"t tend to assign those labels with low occurrence frequency for samples. Thus we proposed a novel weighted ML-kNN algorithm by concerning distances between a sample and its neighbors. We evaluated its performance on three benchmark datasets with seven metrics. The experiment results show that the weighted ML-kNN algorithm has better performance than ML-kNN on the whole.
作者 王春艳 WANG Chun-yan (Department of Computer Science and Technology, Tongji University, Shanghai 201804, China)
出处 《电脑知识与技术》 2012年第2期816-818,851,共4页 Computer Knowledge and Technology
关键词 多标签学习 ML—kNN 距离加权 加权ML—kNN Multi-label Learning ML-kNN Distance weight Weighted ML-kNN
  • 相关文献

参考文献13

  • 1Schapire R E,Singer Y.Boostexter:a boosting-based system for text categorization[J].Machine Learning,2000,39(2-3):135-168.
  • 2Godbole S,Sarawagi S.Discriminative methods for multi-labeled classification[C] //Proceedings of the 8th Pacic-Asia Conference on Knowledge Discovery and Data Mining.2004,3056:22-30.
  • 3卫志华.中文文本多标签分类研究[D].上海:同济大学,2010.
  • 4Qi Guojun,Hua Xiansheng,Rui Yong,et al.Correlative multi-label video annotation[C] //Proceedings of the 15th international conference on Multimedia,2007:17-26.
  • 5Zhang Minling,Zhou Zhihua.ML-kNN:A lazy learning approach to multi-label learning[J].Pattern Recognition,2007,40(7):2038-2048.
  • 6Clare A,King R.Knowledge discovery in multi-label phenotype data[C] //Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery,2001,2168:42-53.
  • 7Blockeel H,Schietgat L,Struyf J,et al.Decision Trees for Hierarchical Multilabel Classification:A Case Study in Functional Genomics[J].Lecture Notes in Computer Science.2006,4213:18-29.
  • 8Tsoumakas G,Katakis I,Vlahavas I.Mining Multi-label Data.Data Mining and Knowledge Discovery Handbook[M] //Maimon O,Rokach L.2nd ed.Springer,2010:667-685.
  • 9Hüllermeier E,Fürnkranz J,Cheng Weiwei,et al.Label ranking by learning pairwise preferences[J].Artificial Intelligence,2008,172(16-17):1897-1916.
  • 10Elisseeff A,Weston J.A kernel method for multi-labelled classification[J].Advances in Neural Information Processing Systems,2002,14:681-687.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部